Bayesian Methods in Nuclear Physics
A workshop on
Bayesian Methods in Nuclar Physics was held at
the Institute for
Nuclear Theory at the University of Washington in
Seattle from June 13 to July 8, 2016. These pages continue the discussion
initiated at this program. The workshop was the number 4 of the ISNET
(Information and Statistics in Nuclear Experiments and Theory) family of
meetings. Talks given at ISNET-3 and ISNET-5 are also listed here.
Goal: For statisticians and
nuclear practitioners to jointly explore how Bayesian
inference can enable progress on the frontiers of nuclear
physics and open up new directions for the field.
Information about Participants
All participants in the program are encouraged to provide information
about their research specialty, statistics connection, and up to five
relevant references. Send your info to furnstahl.1 at osu.edu or awsteiner at utk.edu
(or you can edit this page directly via
github if you have joined the
project).
Entries are in alphabetical order by last name.
- Steffen A. Bass, Duke University, bass at phy.duke.edu
-
Nuclear Theory. Modeling and phenomenology of relativistic
heavy-ion collisions. Model-to-data comparisons using Bayesian inference.
- Constraining the initial state granularity with bulk
observables in Au+Au collisions
H. Petersen, C.E. Coleman-Smith, S.A. Bass and R.L. Wolpert,
J. Phys. G38
045102 (2011)[arXiv:1012.4629]
- Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison,
J.E. Bernhard, P.W. Marcy, C.E. Coleman-Smith,
S. Huzurbazar, R.L. Wolpert and S.A. Bass,
Phys.
Rev. C91 054910 (2015)
[arXiv:1502.00339].
- Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium,
J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and
U.W. Heinz,
[arXiv:1605.03954]
- Jonah Bernhard, Duke University, jeb65 at phy.duke.edu
-
Computational nuclear physics; extracting properties of hot and dense QCD matter from relativistic heavy-ion collision data.
-
Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison,
J. E. Bernhard, P. W. Marcy, C. E. Coleman-Smith, S. Huzurbazar, R. L. Wolpert, S.A. Bass,
Phys. Rev. C91 054910 (2015),
[arXiv:1502.00339].
-
Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium,
J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, U. W. Heinz,
[arXiv:1605.03954].
- Derek Bingham, Simon Fraser University, dbingham at stat.sfu.ca
-
Bayesian methods, computer experiments, design of experiments, uncertainty
quantification.
- Prediction and Computer Model calibration using
outputs from multi-fidelity simulators
J. Goh, D. Bingham, J.P Holloway, M.J. Grosskopf, C.C Kuranz,
and E. Rutter,
,
Technometrics, 2013, 55(4), 501-512
•
- Efficient emulators of computer experiments
using compactly supported correlation functions, with an application to
cosmology,
• C.G. Kaufman, D. Bingham, S. Habib, K.
Heitmann, and J.A. Frieman,
, Annals of Applied
Statistics, 2011, 2470-2492.
- Roberto Capote, IAEA Nuclear Data Section, r.capotenoy at iaea.org
-
Nuclear Data modeling and nuclear data evaluation. Bayesian evaluation
methods in nuclear data.
- An Investigation of the
Performance of the Unified Monte Carlo Method of Neutron Cross Section Data Evaluation,
R. Capote and D.L. Smith, Nucl. Data Sheets, Vol. 109, p. 2768 (2008).
- Nuclear data evaluation methodology including estimates of covariances,
R. Capote, D.L. Smith, and A. Trkov, EPJ Web of Conferences, Vol. 8, p. 04001
(2010).
- Transformation of correlation
coefficients between normal and lognormal distribution and implications for
nuclear applications, G. Žerovnik, A. Trkov, D. L. Smith, R. Capote, Nuclear Instruments and Methods in Physics Research
A727 (2013) 33–39.
- A New Formulation of the Unified Monte Carlo Approach (UMC-B) and Cross-Section: Evaluation for the Dosimetry Reaction 55Mn(n,g)56Mn,
R. Capote, D.L. Smith, A. Trkov, and M. Meghzifene,
J. ASTM International 9(4), JAI 104119 (2012).
- Uncertainties of mass extrapolations in
Hartree-Fock-Bogoliubov mass models, S. Goriely and R. Capote, Phys. Rev. C89 (2014) 054318.
- Dick Furnstahl, Ohio State University, furnstahl.1 at osu.edu
-
Low-energy nuclear physics theory; applying Bayesian methods to effective
field theory, including parameter estimation and model selection.
- Bayesian parameter estimation for effective field theories,
S. Wesolowski, N. Klco, R.J. Furnstahl, D.R. Phillips and A. Thapaliya,
J. Phys. G 43, 074001 (2016)
[arXiv:1511.03618].
- Quantifying truncation errors in effective field theory,
R.J. Furnstahl, N. Klco, D.R. Phillips and S. Wesolowski,
Phys. Rev. C 92, 024005 (2015)
[arXiv:1506.01343].
- A recipe for EFT uncertainty quantification in nuclear physics,
R.J. Furnstahl, D.R. Phillips, and S. Wesolowski,
J. Phys. G 42, 034028 (2015)
[arXiv:1407.0657].
- Harald W. Griesshammer, George Washington University,
hgrie at gwu.edu
-
Nuclear and particle theory: the Effective Field Theories
describing one- and few-nucleon systems at low energies,
emphasising theory consistency, data consistency and
consistency between the two.
- Michael Grosskopf, Simon Fraser University,
mgrossko at sfu.ca
-
Bayesian methods, Calibration and emulation of computer models, Statistical learning,
Uncertainty quantification
- Prediction and Computer Model calibration using
outputs from multi-fidelity simulators
J. Goh, D. Bingham, J.P Holloway, M.J. Grosskopf, C.C Kuranz,
and E. Rutter,
,
Technometrics, 2013, 55(4), 501-512
-
Calibrating a Large Computer Experiment Simulating Radiative Shock Hydrodynamics,
Robert B. Gramacy, Derek Bingham, James Paul Holloway, Michael J. Grosskopf, Carolyn C. Kuranz,
Erica Rutter, Matt Trantham, and R. Paul Drake, The annals of applied statistics,
2015, Vol.9(3), p.1141-1168
-
Conceptual design of a Rayleigh-Taylor experiment to study bubble merger in two dimensions on NIF,
Malamud, G, Grosskopf, MJ, Drake, RP, High Energy Density Physics,Vol. 11, p. 17-25,
DOI: 10.1016/j.hedp.2014.01.001
- Dave Ireland, University of Glasgow, David.Ireland at glasgow.ac.uk
-
Experimental hadron physics, baryon spectroscopy. Bayesian methods for experimental data analysis. Use of information theory.
- Natalie Klco, University of Washington, klcon at uw.edu
-
Low-energy nuclear physics theory; applying Bayesian methods to effective
field theory, including parameter estimation and model selection.
- Bayesian parameter estimation for effective field theories,
S. Wesolowski, N. Klco, R.J. Furnstahl, D.R. Phillips and A. Thapaliya,
J. Phys. G 43, 074001 (2016)
[arXiv:1511.03618].
- Quantifying truncation errors in effective field theory,
R.J. Furnstahl, N. Klco, D.R. Phillips and S. Wesolowski,
Phys. Rev. C 92, 024005 (2015)
[arXiv:1506.01343].
- Earl Lawrence, Statistician, Los Alamos National Laboratory, earl at lanl.gov
-
Bayesian methods, methods for computationally intensive models,
applications of statistics to physics.
- Partitioning a Large Simulation While It Runs,
Kary Myers, Earl Lawrence, Michael Fugate, Clair McKay Bowen, Lawrence
Ticknor, Jon Woodring, Joanne Wendelberger, and James Ahrens,
Technometrics, (2016)
[arXiv:1409.0909].
- The Coyote Universe extended: Precision emulation of the matter
power spectrum,
Katrin Heitmann, Earl Lawrence, Juliana Kwan, Salman Habib,
and David Higdon,
The Astrophysical Journal, (2013)
[arXiv:1304.7849].
- Computer model calibration using the ensemble Kalman filter,
David Higdon, James Gattiker, Earl Lawrence, Charles Jackson, Michael Tobis,
Matthew Pratola, Salman Habib, Katrin Heitmann, and Steve Price,
Technometrics, (2013)
[arXiv:1204.3547].
- Simulation-aided inference in cosmology,
David Higdon, Earl Lawrence, Katrin Heitmann, and Salman Habib,
Statistical Challenges in Modern Astronomy V, (2012)
- The Coyote Universe III:
Simulation suite and precision emulator for the nonlinear matter power
spectrum,
Earl Lawrence, Katrin Heitmann, Martin White, David Higdon, Christian
Wagner, Salman Habib, and Brian Williams,
The Astrophysical Journal, 713 (2010)
[arXiv:0912.4490].
- Witold Nazarewicz, Michigan State University, witek at frib.msu.edu
-
Nuclear structure and reactions theory; uncertainty quantification of
nuclear models, including parameter estimation, model selection, and
information content of experimental data assessment.
- Impact of Nuclear Mass Uncertainties on the r Process,
D. Martin, A. Arcones, W. Nazarewicz, and E. Olsen,
Phys. Rev. Lett. 116, 121101 (2016)
[arXiv:1512.03158].
- Nuclear charge and neutron radii and nuclear matter: Trend analysis in
Skyrme density-functional-theory approach,
P.-G. Reinhard and W. Nazarewicz,
Phys. Rev. C 93, 051303(R) (2016)
[arXiv:1601.06324].
- Uncertainty Quantification for Nuclear Density Functional Theory and
Information Content of New Measurements,
J.D. McDonnell, N. Schunck, D.
Higdon, J. Sarich, S.M. Wild, W. Nazarewicz,
Phys.
Rev. Lett. 114, 112501 (2015)
[arXiv:1501.03572].
- Error Estimates of Theoretical Models: a Guide,
J. Dobaczewski, W. Nazarewicz, and P.-G. Reinhard,
J. Phys. G 41, 074001 (2014)
[arXiv:1402.4657].
- Information content of the low-energy electric dipole strength: Correlation
analysis,
P.-G. Reinhard and W. Nazarewicz,
Phys. Rev. C 87, 014324 (2013)
[arXiv:1211.1649].
- Denise Neudecker, Los Alamos National Laboratory, dneudecker at lanl.org
-
Uncertainty quantification of nuclear data. Bayesian evaluation methods in
nuclear data.
- Impact of model defect and
experimental uncertainties on evaluated output,
D. Neudecker, R. Capote, and H.Leeb, Nuclear Instruments and
Methods in Physics Research A723 (2013) 163–172.
- Impact of the
Normalization Condition and Model Information on Evaluated Prompt Fission
Neutron Spectra and Associated Uncertainties,
D. Neudecker, D.L. Smith, R. Capote, T. Burr and P. Talou, Nucl. Sc. & Eng. 179 (2015)
381-397.
- A study of UMC in one dimension, D.L. Smith, D. Neudecker, R. Capote Noy,
IAEA Report INDC(NDS)-0709 (2016).
- Daniel Phillips, Ohio University, phillid1 at ohio.edu
-
Theory and phenomenology of few-nucleon systems, especially electromagnetic
reactions;
Universality in atomic & nuclear physics; Theory of reactions for nuclei
near the dripline;
Applications of Effective Field Theory and Bayesian Methods to these
topics.
- Bayesian parameter estimation for effective field theories,
S. Wesolowski, N. Klco, R.J. Furnstahl, D.R. Phillips and A. Thapaliya,
J. Phys. G 43, 074001 (2016)
[arXiv:1511.03618].
- Halo effective field theory constrains the solar 7Be + p → 8B + γ rate,
Xilin Zhang, Kenneth M. Nollett, and D.R. Phillips,
Phys.Lett. B751 (2015) 535-540
[arXiv:1507.07239].
- Quantifying truncation errors in effective field theory,
R.J. Furnstahl, N. Klco, D.R. Phillips and S. Wesolowski,
Phys. Rev. C 92, 024005 (2015)
[arXiv:1506.01343].
- A recipe for EFT uncertainty quantification in nuclear physics,
R.J. Furnstahl, D.R. Phillips, and S. Wesolowski,
J. Phys. G 42, 034028 (2015)
[arXiv:1407.0657].
- Using effective field theory to analyse low-energy Compton scattering data
from protons and light nuclei,
Xilin Zhang, Kenneth M. Nollett, D.R. Phillips,
Prog.
Part. Nucl. Phys. 67, 841 (2012)
[arXiv:1203.6834].
- Chong Qi, KTH Royal Institute of Technology, Stockholm, chongq at kth.se
-
Low energy nuclear structure theory. Structure and decay properties of intermediate-mass and heavy nuclei. Large-scale shell model configuration interaction calculations.
- Nicolas Schunck, LLNL schunck1 at llnl.gov
-
Nuclear theory. Structure of heavy nuclei and nuclear fission. High-performance computing for nuclear density functional theory.
- Uncertainty quantification and propagation in nuclear density functional theory ,
N. Schunck, J. McDonnell, D. Higdon, J. Sarich, S. Wild
Eur. Phys. J. A, 51 (2015) 1
[arXiv:1503.05894].
- Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements ,
J. McDonnell, N. Schunck, D. Higdon, J. Sarich, S. Wild, W. Nazarewicz
Phys. Rev. Lett. 114, 122501 (2015)
[arXiv:1501.03572].
- Donald L. Smith, Argonne National Laboratory (r), DonaldLarnedSmith at gmail.com
-
Nuclear physics experiments and nuclear data evaluation. Bayesian evaluation
methods in nuclear data.
- D.L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear
Science and Technology, American Nuclear Society, LaGrange Park, IL (1991).
- D. L. Smith, A Unified Monte Carlo Approach to Fast Neutron Cross
Section Data Evaluation, Report ANL/NDM-166 (2008), Argonne National
Laboratory.
- An Investigation of the
Performance of the Unified Monte Carlo Method of Neutron Cross Section Data Evaluation,
R. Capote and D.L. Smith, Nucl. Data Sheets, Vol. 109, p. 2768 (2008).
- Nuclear data evaluation methodology including estimates of covariances,
R. Capote, D.L. Smith, and A. Trkov, EPJ Web of Conferences, Vol. 8, p. 04001
(2010).
- Impact of the
Normalization Condition and Model Information on Evaluated Prompt Fission
Neutron Spectra and Associated Uncertainties, D. Neudecker, D.L. Smith, R. Capote, T. Burr and P. Talou, Nucl. Sc. & Eng. 179 (2015) 381-397.
- Ron Soltz, LLNL soltz1 at llnl.gov
-
Experimental Nuclear Physics and modeling Relativistic Heavy Ion Collisions.
Interest in applying Bayesian methods to improve jet finding in high
multiplicity backgrounds.
- Constraining the initial temperature and shear viscosity in a hybrid
hydrodynamic model of sqrt(s_NN)=200 GeV Au+Au collisions using pion
spectra, elliptic flow, and femtoscopic radii,
R.A. Soltz et al,
Phys. Rev. C 87, 044901 (2013)
[arXiv:1208.0897].
- Andrew W. Steiner, UTK/ORNL, awsteiner at
utk.edu,
-
Theoretical nuclear astrophysics, especially combining
nuclear theory and nuclear data with astronomical
observations using Bayesian inference. Also, open-source
scientific computing.
- Neutron Star Radii, Universal Relations, and the Role of Prior
Distributions,
A. W. Steiner, J. M. Lattimer, and E. F. Brown,
Eur. Phys. J. A, 52 (2016) 18
[arXiv:1510.07515].
- Constraints on the symmetry energy using the mass-radius
relation of neutron stars,
James M. Lattimer and Andrew W. Steiner,
Eur. Phys. J. A, 50 (2014) 40
[arXiv:1403.1186].
- Moving beyond Chi-squared in nuclei and neutron stars,
A. W. Steiner,
J. Phys. G, 42 (2015) 034004
[arXiv:1407.0100].
- The Equation of State from Observed Masses and Radii of
Neutron Stars,
A. W. Steiner, J. M. Lattimer, and E.F. Brown,
Astrophys. J., 722 (2010) 33
[arXiv:1005.0811].
- Dario Vretenar, University of Zagreb, vretenar at phy.hr
-
Low-energy nuclear physics theory; nuclear structure models, nuclear
energy density functionals, nuclear fission.
- Optimizing relativistic energy density functionals: covariance analysis,
T Nikšić, N Paar, P-G Reinhard, and D Vretenar,
J. Phys. G: Nucl. Part. Phys. 42 (2015).
- Neutron skin thickness from the measured electric dipole polarizability in
68Ni, 120Sn, and 208Pb,
X. Roca-Maza, X. Viñas, M. Centelles, B. K. Agrawal, G. Colò, N. Paar, J. Piekarewicz, and D. Vretenar,
Phys.
Rev. C 92, 064304 (2015)
[arXiv:1510.01874].
- Sarah Wesolowski, Ohio State University, sarahcwesolowski at gmail.com
-
Low-energy nuclear physics theory; applying Bayesian methods to effective
field theory, including parameter estimation and model selection.
- Bayesian parameter estimation for effective field theories,
S. Wesolowski, N. Klco, R.J. Furnstahl, D.R. Phillips and A. Thapaliya,
J. Phys. G 43, 074001 (2016)
[arXiv:1511.03618].
- Quantifying truncation errors in effective field theory,
R.J. Furnstahl, N. Klco, D.R. Phillips and S. Wesolowski,
Phys. Rev. C 92, 024005 (2015)
[arXiv:1506.01343].
- A recipe for EFT uncertainty quantification in nuclear physics,
R.J. Furnstahl, D.R. Phillips, and S. Wesolowski,
J. Phys. G 42, 034028 (2015)
[arXiv:1407.0657].