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Mathematical/Numerical Optimization for ISNET

Possible Topics Today

⋄ Optimization Basics

⋄ Optimization for Expensive Model Calibration

fast, – limiting the number of expensive simulation evaluations
local, – given enough resources, find you a point for which you cannot

improve the objective in a local neighborhood
derivative-free – useful in situations where derivatives unavailable

⋄ Beyond χ2 Minimization

⋄ Stochastic Optimization

⋄ Bayesian Optimization
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1. Mathematical/Numerical Nonlinear Optimization

Optimization is the “science of better”

Find parameters (controls) x = (x1, . . . , xn) in domain Ω to improve objective f

min {f(x) : x ∈ Ω ⊆ R
n}

⋄ (Unless Ω is very special) Need to evaluate f at many x to find a good x̂∗

⋄ Focus on local solutions: f(x̂∗) ≤ f(x) ∀x ∈ N (x̂∗) ∩ Ω
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Implicitly assume that uncertainty modeled through constraints and objective(s)
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The Price of Algorithm Choice: Solvers in PETSc/TAO

chwirut1 (n = 6)
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lmvm

pounders

nm

Toolkit for Advanced Optimization

[Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes ∇xf

unavailable, black box

pounders Assumes ∇xf

unavailable, exploits
problem structure

lmvm Uses available ∇xf

Observe: Constrained by budget on #evals, method limits solution accuracy/problem size
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Why Not Global Optimization, minx∈Ω f(x)?

Careful:

⋄ Global convergence: Convergence (to a local
solution/stationary point) from anywhere in Ω

⋄ Convergence to a global minimizer: Obtain x∗ with
f(x∗) ≤ f(x) ∀x ∈ Ω
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Anyone selling you global solutions when derivatives are unavailable:

either assumes more about your problem (e.g., convex f)

or expects you to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for any
continuous f if and only if the sequence of points visited by the
algorithm is dense in Ω.

or cannot be trusted
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Anyone selling you global solutions when derivatives are unavailable:

either assumes more about your problem (e.g., convex f)

or expects you to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for any
continuous f if and only if the sequence of points visited by the
algorithm is dense in Ω.

or cannot be trusted

Instead:

⋄ Rapidly find good local solutions and/or be robust to poor solutions

⋄ Find several good local solutions concurrently (APOSMM/LibEnsemble)
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Optimization Tightly Coupled With Derivatives (WRT Parameters)

Typical optimality (no noise, smooth functions)

∇xf(x∗) + λT∇xcE(x∗) = 0, cE(x∗) = 0

(sub)gradients ∇xf, ∇xc enable:

⋄ Faster feasibility
⋄ Faster convergence

� Guaranteed descent
� Approximation of nonlinearities

⋄ Better termination
� Measure of criticality

‖∇xf‖ or ‖PΩ(∇xf)‖

But derivatives ∇xS(x) are not always available/do not always exist
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Obtain Derivatives ∇xS Whenever Possible

Handcoding (HC)

“Army of students/programmers”

? Prone to errors/conditioning

? Intractable as number of ops increases

Algorithmic/Automatic Differentiation (AD)

“Exact∗ derivatives!”

? No black boxes allowed

? Not always automatic/cheap/well-conditioned

Finite Differences (FD)

“Nonintrusive”

? Expense grows with n

? Sensitive to stepsize choice/noise

→[Moré & W.; SISC 2011], [Moré & W.; TOMS 2012]

. . . then apply derivative-based method (that handles inexact derivatives)
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Algorithmic Differentiation

→ [Coleman & Xu; SIAM 2016], [Griewank & Walther; SIAM 2008]

Computational Graph

⋄ y = sin(a ∗ b) ∗ c
⋄ Forward and reverse modes

⋄ AD tool provides code for your
derivatives

Write codes and formulate
problems with AD in mind!

Many tools (see www.autodiff.org):

F OpenAD

F/C Tapenade, Rapsodia

C/C++ ADOL-C, ADIC

Matlab ADiMat, INTLAB

Python/R ADOL-C

Also done in AMPL, GAMS, JULIA!
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Numerical Differentiation
The Problem: Finite differences sensitive to choice of h

f(t0 + h)− f(t0)

h
≈ f ′
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Numerical Differentiation
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Minimize E {E(h)} = E

{

(

f(t0+h)−f(t0)
h

− f ′
s(t0)

)2
}
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Optimal Forward Difference Parameter h
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Optimal Forward Difference Parameter h
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h ↓ Variance (noise) dominates

h ↑ Bias (f ′′) dominates

1. Upper bound minimized by

hM = 81/4
(

εf
µM

)1/2

� ε2f =Varf(t0)
� µM ≥ |f

′′|

2. When µL > 0, hM is near-optimal:

E {E(hM )} =
√
2µMεf ≤

(

µM

µL

)

min
0≤h≤h0

E {E(h)} .

[Estimating Noisy Derivatives. Moré & W., TOMS 2012]]
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Simulation-Based Optimization

min
x∈Rn

{f(x) = F [S(x)] : c(S(x)) ≤ 0, x ∈ B}

Optimize expensive, nonlinear functions arising in science & engineering

“parameter estimation”, “model calibration”, “design optimization”, . . .

⋄ f : Rn → R objective, S : Rn → R
p numerical simulation, Ω constraints

⋄ Evaluating S means running a simulation modeling some (smooth) process
Ex- S = solving PDEs via finite elements

� Here: assume f is from a deterministic computer simulation

⋄ S can contribute to objective and/or constraints, possibly noisy

⋄ Derivatives ∇xS often unavailable or prohibitively expensive to
obtain/approximate directly

⋄ S (could/must be parallelized) takes secs/mins/hrs/days for 1 x

Evaluation is a bottleneck for optimization

B compact, known region (e.g., finite bound constraints)
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Deterministic Algorithms



“Simplest” (=Most Naive) Formulation: Blackbox f

Optimizer gives x, physicist provides f(x)

⋄ f can be a blackbox (executable only or
proprietary/legacy codes)

⋄ Only give a single output

� no derivatives with respect to x: ∇xS(x),∇2
x,xS(x)

� no problem structure

Good solutions guaranteed in the limit, but:

⋄ Computational budget limits number of evaluations
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“Simplest” (=Most Naive) Formulation: Blackbox f

Optimizer gives x, physicist provides f(x)

⋄ f can be a blackbox (executable only or
proprietary/legacy codes)

⋄ Only give a single output

� no derivatives with respect to x: ∇xS(x),∇2
x,xS(x)

� no problem structure

Good solutions guaranteed in the limit, but:

⋄ Computational budget limits number of evaluations

Two main styles of local algorithms

⋄ Direct search methods (pattern search, Nelder-Mead,
. . . )

⋄ Model- (“surrogate-”)based methods (quadratics, radial
basis functions, . . . )
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Algorithms: Direct Search Methods

Pattern Search

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

1.5

2

2.5

3

3.5

4

4.5

5

Easy to parallelize f evaluations

Nelder-Mead

x
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Popularized by Numerical Recipes

⋄ Rely on indicator functions: [f(xk + s) <? f(xk)]

⋄ Work with black-box f(x), do not exploit structure F [x,S(x)]

→[Kolda, Lewis, Torczon, SIREV 2003]
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Trust-Region Methods Use Models Instead of f

To reduce the number of expensive f evaluations
→ Replace difficult optimization problem min f(x) with a much simpler one
min {m(x) : x ∈ B}

Classic NLP Technique:

f Original function: computationally
expensive, no derivatives

m Surrogate model: computationally
attractive, analytic derivatives
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Basic Trust-Region Idea

Use a surrogate m(x) in place of the unwieldy f(x)
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Optimize over m to avoid expense of f

⋄ Trust m to approximate f within
B = {x ∈ R

n : ‖x− xk‖ ≤ ∆k},
⋄ Obtain next point from

min {m(x) : x ∈ B},
⋄ Evaluate function and update (xk,∆k)

based on how good the model’s
prediction was.
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Interpolation-Based Trust-Region Methods

Iteration k:

⋄ Build a model mk interpolating f

on Yk
⋄ Trust mk within region Bk
⋄ Minimize mk within Bk to obtain

next point for evaluation

⋄ Do expensive evaluation

⋄ Update mk and Bk based on how
good model prediction was
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Exploit Structure!



Performance of Model-Based Methods
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Optimizing EDF in [Bertolli et al., PRC 2012]
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Parameter Estimation is NOT a Blackbox Problem

Generic:

min
x
{f(x) : x ∈ Ω ⊆ R

n}

x n decision variables

f : Rn → R objective function

Ω feasible region,
{x : cE(x) = 0, cI(x) ≤ 0}
cE (vector of) equality constraints
cI (vector of) inequality constraints
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Generic:

min
x
{f(x) : x ∈ Ω ⊆ R

n}

x n decision variables

f : Rn → R objective function

Ω feasible region,
{x : cE(x) = 0, cI(x) ≤ 0}
cE (vector of) equality constraints
cI (vector of) inequality constraints

Typical calibration problem:

f(x) = ‖R(x)‖22 =
∑p

i=1
Ri(x)

2

x n coupling constants

Ri : Rn → R residual function
Ex.- 1

wi
(S(x; θi)− di)

� S(x; θi): numerical simulation
Ex.- Obtain χ2(x) by 1

p−n f(x)

Ω = {x : l ≤ x ≤ u}
� Finite bounds (for some xi)
� Often dictated by dom(S)

[Ekström et al, PRL 2013] [Kortelainen et al, PRC 2014]
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Parameter Estimation is NOT a Blackbox Problem

Generic:
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x
{f(x) : x ∈ Ω ⊆ R

n}

x n decision variables

f : Rn → R objective function

Ω feasible region,
{x : cE(x) = 0, cI(x) ≤ 0}
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cI (vector of) inequality constraints

Typical calibration problem:

f(x) = ‖R(x)‖22 =
∑p

i=1
Ri(x)

2

x n coupling constants

Ri : Rn → R residual function
Ex.- 1

wi
(S(x; θi)− di)

� S(x; θi): numerical simulation
Ex.- Obtain χ2(x) by 1

p−n f(x)

Ω = {x : l ≤ x ≤ u}
� Finite bounds (for some xi)
� Often dictated by dom(S)

[Ekström et al, PRL 2013] [Kortelainen et al, PRC 2014]

⋄ Taking advantage of structure should further reduce # of expensive evaluations
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Exploiting Nonlinear Least Squares Structure

Obtain a vector of output R1(x), . . . , Rp(x)

⋄ (Locally) Model each Ri by a surrogate q
(i)
k

Ri(x) ≈ q
(i)
k (x) = Ri(xk) + (x− xk)

⊤g
(i)
k +

1

2
(x− xk)

⊤H
(i)
k (x− xk)

⋄ Employ models in the approximation

∇f(x) =
∑

i ∇Ri(x)Ri(x) →
∑

i g
(i)
k

(x)Ri(x)

∇
2f(x) =

∑

i ∇Ri(x)∇Ri(x)T + Ri(x)∇2Ri(x) →
∑

i g
(i)
k

(x)g
(i)
k

(x)T + Ri(x)H
(i)
k

(x)
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General Nonlinear Least Squares

min
x

f(x) = ‖R(x)‖2W

R : Rn → R
p “residual vector”

→ Think: Ri(x) = S(x; θi)− di

W norm: ‖y‖W =
(

yTWy
)1/2

→W = Ip recovers ‖ · ‖2
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General Nonlinear Least Squares

min
x

f(x) = ‖R(x)‖2W

R : Rn → R
p “residual vector”

→ Think: Ri(x) = S(x; θi)− di

W norm: ‖y‖W =
(

yTWy
)1/2

→W = Ip recovers ‖ · ‖2
W symmetric positive definite

� W = WT

� yTWy > 0 for all y 6= 0

f(x) =

p
∑

i=1

p
∑

j=1

Wi,jRi(x)Rj (x) ≥ 0
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General Nonlinear Least Squares

min
x

f(x) = ‖R(x)‖2W

R : Rn → R
p “residual vector”

→ Think: Ri(x) = S(x; θi)− di

W norm: ‖y‖W =
(

yTWy
)1/2

→W = Ip recovers ‖ · ‖2
W symmetric positive definite

� W = WT

� yTWy > 0 for all y 6= 0

f(x) =

p
∑

i=1

p
∑

j=1

Wi,jRi(x)Rj (x) ≥ 0

� W = (diag(σ))−1 yields familiar

f(x) =

p
∑

i=1

(S(x; θi)− di)
2

σi

=

p
∑

i=1

Ri(x)
2

σi
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A Warning

Can I pass this to my favorite minx χ2(x) = ‖R̃(x)‖2 solver?
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A Warning

Can I pass this to my favorite minx χ2(x) = ‖R̃(x)‖2 solver?

∑p
i=1

∑p
j=1

(

R̃i,j(x)
)2

=
∑p

i=1

∑p
j=1

(

√

|Wi,jRi(x)Rj(x)|
)2

6= ∑p
i=1

∑p
j=1 Wi,jRi(x)Rj(x)
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A Warning

Can I pass this to my favorite minx χ2(x) = ‖R̃(x)‖2 solver?

∑p
i=1

∑p
j=1

(

R̃i,j(x)
)2

=
∑p

i=1

∑p
j=1

(

√

|Wi,jRi(x)Rj(x)|
)2

6= ∑p
i=1

∑p
j=1 Wi,jRi(x)Rj(x)

! Allow for complex-valued residuals

! Disallow Wi,jRi(x)Rj(x) < 0

In any case, you will likely suffer algorithmically
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Relationship to Covariance Matrices

Data {(θ1, d1), · · · , (θp, dp)}
⋄ Errors independent and normally distributed: d ∼ N(µ,Σ),

di = µ(θi;x∗) + εi, εi ∼ N(0, σ2
i ) i = 1, . . . , p.

Σ is a p× p diagonal matrix, with ith diagonal entry σ2
i

⋄ Model, S(θ;x) with Gaussian errors:

[S(θ1;x), · · · , S(θp;x)]T ∼ N (µ(·; x), C) ,

⋄ C a (p × p symmetric positive definite) covariance matrix accounting for
correlation between model outputs (i.e., Cov(S(θi; x), S(θj ;x)) = Ci,j)

⋄ Assuming model errors are independent of data errors,

[m(x̂; θ1)− d1, · · · , m(x̂; θp)− dp]
T ∼ N(0, C +Σ),

⋄ Joint likelihood l(x; θ; d) ∝ exp

[

−1

2
R(x; θ)T (C+Σ)−1 R(x; θ)

]
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Data {(θ1, d1), · · · , (θp, dp)}
⋄ Errors independent and normally distributed: d ∼ N(µ,Σ),

di = µ(θi;x∗) + εi, εi ∼ N(0, σ2
i ) i = 1, . . . , p.

Σ is a p× p diagonal matrix, with ith diagonal entry σ2
i

⋄ Model, S(θ;x) with Gaussian errors:

[S(θ1;x), · · · , S(θp;x)]T ∼ N (µ(·; x), C) ,

⋄ C a (p × p symmetric positive definite) covariance matrix accounting for
correlation between model outputs (i.e., Cov(S(θi; x), S(θj ;x)) = Ci,j)

⋄ Assuming model errors are independent of data errors,

[m(x̂; θ1)− d1, · · · , m(x̂; θp)− dp]
T ∼ N(0, C +Σ),

⋄ Joint likelihood l(x; θ; d) ∝ exp

[

−1

2
R(x; θ)T (C+Σ)−1 R(x; θ)

]

Warning: C,Σ can no longer hide behind constants of proportionality
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Optical Potentials: Incorporating Covariances in W

Elastic
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Applications Using the Jacobian [Ĵ ]i,j =
∂Ri(x̂)

∂̂xj
= 1

wi

∂S(x;θi)
∂xj

Residual R(x) ∈ R
p undergoes a change by ǫ ∈ R

p

⋄ Ex.- normalized datum di
wi

is changed to di
wi

+ ǫi

x̂ ∈ arg min
x̂∈Rn

f0(x) = ‖R(x)‖22 x̂ǫ ∈ arg min
x̂∈Rn

f(x) = ‖R(x) + ǫ‖22

A second-order expansion of f = ‖R(x) + ǫ‖22 about x̂:

f(x̂) + 2ǫT Ĵ(x− x̂) +
1

2
(x− x̂)T

(

∇2f0(x̂) + 2

p
∑

i=1

ǫi∇2Ri(x̂)

)

(x− x̂),

When ǫ is small, this quadratic will be convex and hence minimized at

xǫ − x̂ = 2
(

∇2f0(x̂)
)−1

ĴT ǫ+O(‖ǫ‖2).

When R(x̂) is small, ∇2f0(x̂) ≈ 2ĴT Ĵ and

x̃ǫ ≈ x̂+
(

ĴT Ĵ
)−1

ĴT ǫ
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Stochastic Optimization



Stochastic Optimization

General problem
min

{

f(x) = Eξ [F (x, ξ)] : x ∈ X
}

(1)

⋄ x ∈ R
n decision variables

⋄ ξ vector of random variables
� independent of x
� P (ξ) distribution function for ξ
� ξ has support Ξ

⋄ F (x, ·) functional form of uncertainty for decision x

⋄ X ⊆ R
n set defined by deterministic constraints
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Approach of Sampling Methods for f(x) = Eξ [F (x, ξ)]

⋄ Let ξ1, ξ2, · · · , ξN ∼ P

⋄ For x ∈ X, define:

fN (x) =
1

N

N
∑

i=1

F (x, ξi)

� fN is a random variable (really, a stochastic process)

(depends on
(

ξ1, ξ2, · · · , ξN
)

)

� Motivated by Eξ [fN (x)] = f(x)
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Bias of Sampling Methods

⋄ Let f∗ = f(x∗) for x∗ ∈ X∗ ⊆ X
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Bias of Sampling Methods

⋄ Let f∗ = f(x∗) for x∗ ∈ X∗ ⊆ X

⋄ For any N ≥ 1:
Eξ [f

∗
N ] ≤ f∗ = Eξ [F (x∗, ξ)]

because

Eξ [f
∗
1 ] = Eξ [min {F (x, ξ) : x ∈ X}] ≤ min

{

Eξ [F (x, ξ)] : x ∈ X
}

= f∗
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Bias of Sampling Methods

⋄ Let f∗ = f(x∗) for x∗ ∈ X∗ ⊆ X

⋄ For any N ≥ 1:
Eξ [f

∗
N ] ≤ f∗ = Eξ [F (x∗, ξ)]

because

Eξ [f
∗
1 ] = Eξ [min {F (x, ξ) : x ∈ X}] ≤ min

{

Eξ [F (x, ξ)] : x ∈ X
}

= f∗

⋄ Sampling problems result in optimal values below f∗

⋄ f∗
N is biased estimator of f∗
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Sample Average Approximation

⋄ Draw realizations ξ̂1, ξ̂2, · · · , ξ̂N ∼ P of
(

ξ1, ξ2, · · · , ξN
)

⋄ Replace (1) with

min

{

1

N

N
∑

i=1

F (x, ξ̂i) : x ∈ X

}

(2)

� f̂N (x) = 1
N

∑N
i=1 F (x, ξ̂i) deterministic

� Follows mean of the N sample paths defined by the (fixed) ξ̂i
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Convergence with N

⋄ A sufficient condition:
� For any ǫ > 0 there exists Nǫ so that

∣

∣

∣
f̂N (x)− f(x)

∣

∣

∣
< ǫ ∀N ≥ Nǫ ∀ x ∈ X

with probability 1 (wp1).

⋄ Then f̂∗
N → f∗ wp1.

⋄ (With additional assumptions on f and X∗ ⊂ X):
dist(x∗

N , X∗)→ 0

⋄ (+ uniqueness, X∗ = x∗):
x∗
N → x∗
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Stochastic Approximation Method

Basically just:

Input x0

1. xk+1 ← PX

{

xk − αks
k
}

, k = 0, 1, . . .

⋄ αk a step size

⋄ sk a random direction
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Stochastic Approximation Method

Basically just:

Input x0

1. xk+1 ← PX

{

xk − αks
k
}

, k = 0, 1, . . .

⋄ αk a step size

⋄ sk a random direction

Generally assume:

αk:
∑∞

k=0 αk =∞,
∑∞

k=0 α
2
k <∞ (e.g., αk = c

k
)

sk: E
{

∇f(xk)T sk
}

> 0

sk is an ascent direction (in expectation) at xk
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Stochastic Approximation Method

Basically just:

Input x0

1. xk+1 ← PX

{

xk − αks
k
}

, k = 0, 1, . . .

⋄ αk a step size

⋄ sk a random direction

Generally assume:

αk:
∑∞

k=0 αk =∞,
∑∞

k=0 α
2
k <∞ (e.g., αk = c

k
)

sk: E
{

∇f(xk)T sk
}

> 0

sk is an ascent direction (in expectation) at xk

⋄ “Exact” Stochastic Gradient Descent: sk = ∇f(xk)
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Classic SA Algorithms

⋄ “Original” method is Robbins-Monro (1951)

⋄ Without derivatives: Kiefer-Wolfowitz (1952)
replaces gradient with finite-difference approximation, e.g.,

1. xk+1 ← xk − αks
k , k = 0, 1, . . .

� where

s
k =

F (xk + hkIn; ξ̂
k)− F (xk − hkIn; ξ̂

k+1/2)

2hk
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Classic SA Algorithms

⋄ “Original” method is Robbins-Monro (1951)

⋄ Without derivatives: Kiefer-Wolfowitz (1952)
replaces gradient with finite-difference approximation, e.g.,

1. xk+1 ← xk − αks
k , k = 0, 1, . . .

� where

s
k =

F (xk + hkIn; ξ̂
k)− F (xk − hkIn; ξ̂

k+1/2)

2hk

� Requires 2n evaluations every iteration
� Can appeal to variance reduction techniques (e.g., common RNs)
� Convergence xk → x∗ if f strongly convex (near x∗), usual conditions on αk ,

hk → 0,
∑

k

α2
k

h2
k

<∞

� K-W recommend: αk = 1
k , hk = 1

k1/3
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Classic SA Algorithms

⋄ “Original” method is Robbins-Monro (1951)

⋄ Without derivatives: Kiefer-Wolfowitz (1952)
replaces gradient with finite-difference approximation, e.g.,

1. xk+1 ← xk − αks
k , k = 0, 1, . . .

� where

s
k =

F (xk + hkIn; ξ̂
k)− F (xk − hkIn; ξ̂

k+1/2)

2hk

� Requires 2n evaluations every iteration
� Can appeal to variance reduction techniques (e.g., common RNs)
� Convergence xk → x∗ if f strongly convex (near x∗), usual conditions on αk ,

hk → 0,
∑

k

α2
k

h2
k

<∞

� K-W recommend: αk = 1
k , hk = 1

k1/3

⋄ Extensions such as SPSA (Spall) reduce number of evaluations (see randomized
methods slides. . . )
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Derivative-Based Stochastic Gradient Descent

Input x0; Repeat:

1. Draw realization ξ̂k ∼ P of ξk

2. Compute sk = ∇xF (xk; ξ̂k)

3. Update xk+1 ← PX

{

xk − αks
k
}
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Input x0; Repeat:

1. Draw realization ξ̂k ∼ P of ξk

2. Compute sk = ∇xF (xk; ξ̂k)

3. Update xk+1 ← PX

{

xk − αks
k
}

⋄ ∇xF (xk; ξ̂k) is an unbiased estimator for ∇f(xk)
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Derivative-Based Stochastic Gradient Descent

Input x0; Repeat:

1. Draw realization ξ̂k ∼ P of ξk

2. Compute sk = ∇xF (xk; ξ̂k)

3. Update xk+1 ← PX

{

xk − αks
k
}

⋄ ∇xF (xk; ξ̂k) is an unbiased estimator for ∇f(xk)

⋄ Can incorporate curvature if desired

e.g., Bksk an unbiased estimator for
(

∇2f(xk)
)

−1
∇f(xk)

⋄ Can work with subgradients

⋄ Can even output xN = 1
N

∑N
k=1 x

k
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Randomized Algorithms for Deterministic Problems

min {f(x) : x ∈ X ⊆ R
n}

⋄ f deterministic

⋄ Random variables are now generated by the method, not from the problem

⋄ Often assume properties of f
e.g., ∇f is L′-Lipschitz:

‖∇f(x)−∇f(y)‖ ≤ L
′‖x− y‖ ∀x, y ∈ X

e.g., f is strongly convex (with parameter τ ):

f(x) ≥ f(y) + (x− y)T∇f(y) +
τ

2
‖x− y‖2 ∀x, y ∈ X
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Basic Algorithms

Matyas (e.g., 1965):

⋄ Input x0; repeat:

1. Generate Gaussian uk (centered about 0)

2. Evaluate f(xk + uk)

3. xk+1 =

{

xk + uk if f(xk + uk) < f(xk)

xk otherwise.
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Basic Algorithms

Matyas (e.g., 1965):

⋄ Input x0; repeat:

1. Generate Gaussian uk (centered about 0)

2. Evaluate f(xk + uk)

3. xk+1 =

{

xk + uk if f(xk + uk) < f(xk)

xk otherwise.

Poljak (e.g., 1987)

⋄ Input x0, {hk, µk}k; repeat:
1. Generate a random uk ∈ Rn

2. xk+1 = xk − hk
f(xk + µku

k)− f(xk)

µk

uk

� hk > 0 is the step size
� µk > 0 is called the smoothing parameter
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Applying SA-Like Ideas to Special Cases

min

{

f(x) =
1

m

m
∑

i=1

Fi(x) : x ∈ X

}

m huge
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Applying SA-Like Ideas to Special Cases

min

{

f(x) =
1

m

m
∑

i=1

Fi(x) : x ∈ X

}

m huge
Ex.- Nonlinear Least Squares Warning: likely nonconvex!

Fi(x) = ‖φ(x; θi)− di‖2
Evaluating φ(·, ·) requires solving a large PDE

Ex.- Sample Average Approximation

Fi(x) = R(x; ξ̂i)

ξ̂i ∈ Ω a scenario/RV realization

(and R depends nontrivially on ξ̂i)
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Applying SA-Like Ideas to Special Cases

min

{

f(x) =
1

m

m
∑

i=1

Fi(x) : x ∈ X

}

m huge
Ex.- Nonlinear Least Squares Warning: likely nonconvex!

Fi(x) = ‖φ(x; θi)− di‖2
Evaluating φ(·, ·) requires solving a large PDE

Ex.- Sample Average Approximation

Fi(x) = R(x; ξ̂i)

ξ̂i ∈ Ω a scenario/RV realization

(and R depends nontrivially on ξ̂i)

The good:

⋄ ∇f(x) =∑m
i=1∇Fi(x)

The bad:

⋄ m still huge
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Residual Stochastic Averaging

min

{

f(x) =
1

m

m
∑

i=1

Fi(x) : x ∈ X

}

“Fi(x) is a member of a population of size m”
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Residual Stochastic Averaging

min

{

f(x) =
1

m

m
∑

i=1

Fi(x) : x ∈ X

}

“Fi(x) is a member of a population of size m”

⋄ Randomly sample S, a subset of size |S|, from {1, · · · ,m}
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Residual Stochastic Averaging

min

{

f(x) =
1

m

m
∑

i=1

Fi(x) : x ∈ X

}

“Fi(x) is a member of a population of size m”

⋄ Randomly sample S, a subset of size |S|, from {1, · · · ,m}
⋄ Under minimal assumptions:

E







1

|S|
∑

i∈S

Fi(x)







= f(x) and E







1

|S|
∑

i∈S

∇Fi(x)







= ∇f(x)
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Residual Stochastic Averaging

min

{

f(x) =
1

m

m
∑

i=1

Fi(x) : x ∈ X

}

“Fi(x) is a member of a population of size m”

⋄ Randomly sample S, a subset of size |S|, from {1, · · · ,m}
⋄ Under minimal assumptions:

E







1

|S|
∑

i∈S

Fi(x)







= f(x) and E







1

|S|
∑

i∈S

∇Fi(x)







= ∇f(x)

⋄ Use −∇fS = − 1
|S|

∑

i∈S ∇Fi(x) as direction sk
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Residual Stochastic Averaging

min

{

f(x) =
1

m

m
∑

i=1

Fi(x) : x ∈ X

}

“Fi(x) is a member of a population of size m”

⋄ Randomly sample S, a subset of size |S|, from {1, · · · ,m}
⋄ Under minimal assumptions:

E







1

|S|
∑

i∈S

Fi(x)







= f(x) and E







1

|S|
∑

i∈S

∇Fi(x)







= ∇f(x)

⋄ Use −∇fS = − 1
|S|

∑

i∈S ∇Fi(x) as direction sk

⋄ How to choose S?

E
{

‖∇fSn −∇f‖2
}

=

(

1− |S|
m

)

E
{

‖∇fSr −∇f‖2
}

⇒ sampling without replacement (Sn) gives lower variance than does sampling
with replacement (Sr)
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Bayesian Optimization for Approximate Global Optimization

Statistical approaches (e.g., EGO [Jones et al., 1998])

⋄ enjoy global exploration properties,

⋄ excel when simulation is expensive, noisy, nonconvex

. . . but offer limited support for constraints
[Schonlau et al., 1998]; [Gramacy & Lee, 2011]; [Williams et al., 2010]
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Bayesian Optimization for Approximate Global Optimization

Statistical approaches (e.g., EGO [Jones et al., 1998])

⋄ enjoy global exploration properties,

⋄ excel when simulation is expensive, noisy, nonconvex

. . . but offer limited support for constraints
[Schonlau et al., 1998]; [Gramacy & Lee, 2011]; [Williams et al., 2010]

Combine (global) statistical (objective-only) optimization tools

a) response surface modeling/emulation: training a flexible model fk on
{x(i), y(i)}ki=1 to guide choosing x(k+1)

e.g., [Mockus, et al., 1978], [Booker et al., 1999]

b) expected improvement (EI) via Gaussian process (GP) emulation [Jones, et al., 1998]

... with a tool from mathematical programming

c) augmented Lagrangian (AL): for handling nonlinear constraints [Powell, 1969],
[Bertsekas, 1982], . . .

Similar approach for combining other data terms
[Picheny, Gramacy, W., Le Digabel. NIPS 2016]; [Gramacy et al, Technometrics 2016]
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Expected Improvement

Improvement: I(x) = max{0, fk
min − Y (x)}, fk

min ≡ min
i=1,...,k

f(xi)

Expectation of improvement (EI) has closed-form expression:

E{I(x)}=(fk
min − µk(x))Φ

(

fk
min − µk(x)

σk(x)

)

+ σn(x)φ

(

fk
min − µk(x)

σk(x)

)
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Expected Improvement

Improvement: I(x) = max{0, fk
min − Y (x)}, fk

min ≡ min
i=1,...,k

f(xi)

Expectation of improvement (EI) has closed-form expression:

E{I(x)}=(fk
min − µk(x))Φ

(

fk
min − µk(x)

σk(x)

)

+ σn(x)φ

(

fk
min − µk(x)

σk(x)

)
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⋄ balance
exploitation and
exploration

⋄ e.g., EGO: [Jones, et

al., 1998]
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Separate, Independent Component Modeling

⋄ f −→ Yf (x)

⋄ c = (c1, . . . , cm) −→ Yc(x) = (Yc1 (x), . . . , Ycm(x))

Distribution of composite random variable serves as a surrogate for LA(x; λ, ρ):

Y (x) = Yf (x) + λ⊤Yc(x) +
1

2ρ

m
∑

j=1

max(0, Ycj (x))
2
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⋄ f −→ Yf (x)

⋄ c = (c1, . . . , cm) −→ Yc(x) = (Yc1 (x), . . . , Ycm(x))

Distribution of composite random variable serves as a surrogate for LA(x; λ, ρ):

Y (x) = Yf (x) + λ⊤Yc(x) +
1

2ρ

m
∑

j=1

max(0, Ycj (x))
2

Simplifications when f is known:

⋄ Composite posterior mean available in closed form; e.g., under GP priors:

E{Y (x)} = µk
f (x) + λ⊤µk

c (x) +
1

2ρ

m
∑

j=1

E{max(0, Ycj (x))
2}

⋄ Generalized EI [Schonlau et al., 1998] gives

E{max(0, Ycj (x))
2} = σ2n

cj
(x)







1+

(

µk
cj
(x)

σk
cj
(x)

)2


Φ

(

µk
cj
(x)

σk
cj
(x)

)

+
µk
cj
(x)

σk
cj
(x)

φ

(

µk
cj
(x)

σk
cj
(x)

)
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Summary

⋄ Move beyond “blackbox” optimization

⋄ Exploiting structure yields better solutions, in fewer simulations

⋄ Promote optimization/modeling considerations during code development

⋄ Correlated residuals a first step

⋄ Highlights attention that must be paid to model and data uncertainties

⋄ Can repeat for nonGaussian, MAPs, . . .

[www.mcs.anl.gov/tao (Optimization toolkit) www.mcs.anl.gov/~wild (Get in touch!)]

Grateful to relevant coauthors

M. Bertolli, A. Ekström, C. Forssén, R. Gramacy, G. Hagen, M. Hjorth-Jensen, D. Higdon, G.R. Jansen,

M. Kortelainen, E. Lawrence, T. Lesinski, A. Lovell, R. Machleidt, J. McDonnell, J. Moré, T. Munson, H. Nam,

W. Nazarewicz, F.M. Nunes, E. Olsen, T. Papenbrock, A. Pastore, P.-G. Reinhardt, J. Sarich, N. Schunck,

M. Stoitsov, J. Vary, K. Wendt, and others
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Summary

⋄ Move beyond “blackbox” optimization

⋄ Exploiting structure yields better solutions, in fewer simulations

⋄ Promote optimization/modeling considerations during code development

⋄ Correlated residuals a first step

⋄ Highlights attention that must be paid to model and data uncertainties

⋄ Can repeat for nonGaussian, MAPs, . . .

[www.mcs.anl.gov/tao (Optimization toolkit) www.mcs.anl.gov/~wild (Get in touch!)]

Grateful to relevant coauthors

M. Bertolli, A. Ekström, C. Forssén, R. Gramacy, G. Hagen, M. Hjorth-Jensen, D. Higdon, G.R. Jansen,

M. Kortelainen, E. Lawrence, T. Lesinski, A. Lovell, R. Machleidt, J. McDonnell, J. Moré, T. Munson, H. Nam,

W. Nazarewicz, F.M. Nunes, E. Olsen, T. Papenbrock, A. Pastore, P.-G. Reinhardt, J. Sarich, N. Schunck,

M. Stoitsov, J. Vary, K. Wendt, and others

Thank You!
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