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Mathematical /Numerical Optimization for ISNET

Possible Topics Today

< Optimization Basics

< Optimization for Expensive Model Calibration
fast, — limiting the number of expensive simulation evaluations
local, — given enough resources, find you a point for which you cannot

improve the objective in a local neighborhood
derivative-free — useful in situations where derivatives unavailable
< Beyond x? Minimization

< Stochastic Optimization

<

Bayesian Optimization
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1. Mathematical/Numerical Nonlinear Optimization

Optimization is the “science of better”

Find parameters (controls) z = (z1,...,2n) in domain € to improve objective f

min{f(z) :x € Q CR"}

< (Unless 2 is very special) Need to evaluate f at many z to find a good &«
© Focus on local solutions: f(Z«) < f(z) V& € N(&+) N Q

3=

= Unconstrained
O Constrained

-1 -0.5

0 0.5 1

Implicitly assume that uncertainty modeled through constraints and objective(s)
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EEEEEEEEEEEES—S—S—S
The Price of Algorithm Choice: Solvers in PETSc/TAO

chwirutl (n = 6)

H :v 7] e Imvm Toolkit for Advanced Optimization
' ' -A-pounders
' ' ——nm [Munson et al.; mcs.anl.gov/tao]
) 1
10°° : ' = =
5 : | Increasing level of user input:
c - 1
3 \ A
‘-; v ' nm Assumes Vg f
=] Y . unavailable, black box
S s \ .
Z 10* v pounders Assumes V f
-— 1 . .
@ Lo unavailable, exploits
1 1
o F problem structure
- 1
!! \ Imvm Uses available V. f
H -
10°7 ' -
bl Bomhtts
10° 10’ 10°
Number of Evaluations

Observe: Constrained by budget on #evals, method limits solution accuracy/problem size
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Why Not Global Optimization, mingcq f(z)?

0 Local
80 * Global

Careful:

© Global convergence: Convergence (to a local
solution/stationary point) from anywhere in Q

< Convergence to a global minimizer: Obtain z. with
flax) < fox) Vo € Q

A ISNET5 4



Why Not Global Optimization, min,cq f(z)?

O Local
80 * Global

Careful:
Global convergence: Convergence (to a local
solution/stationary point) from anywhere in

Convergence to a global minimizer: Obtain z. with
flzs) < f(z)Vz € Q

Anyone selling you global solutions when derivatives are unavailable:
either assumes more about your problem (e.g., convex f)
or expects you to wait forever

Térn and Zilinskas: An algorithm converges to the global minimum for any
continuous f if and only if the sequence of points visited by the
algorithm is dense in Q.

or cannot be trusted
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Why Not Global Optimization, min,cq f(z)?

O Local
80 * Global

Careful:

Global convergence: Convergence (to a local
solution/stationary point) from anywhere in

Convergence to a global minimizer: Obtain z. with
flzs) < f(z)Vz € Q

Anyone selling you global solutions when derivatives are unavailable:
either assumes more about your problem (e.g., convex f)
or expects you to wait forever

Térn and Zilinskas: An algorithm converges to the global minimum for any
continuous f if and only if the sequence of points visited by the
algorithm is dense in Q.

or cannot be trusted

Instead:
Rapidly find good local solutions and/or be robust to poor solutions
Find several good local solutions concurrently (APOSMM/LibEnsemble)

J ISNET5 4



NN
Optimization Tightly Coupled With Derivatives (WRT Parameters)

Typical optimality (no noise, smooth functions)

Ve f(@e) + AT Vecp(2s) =0, cp(ze) =0

(sub)gradients V. f, V.c enable:
< Faster feasibility

< Faster convergence
¢ Guaranteed descent

o ,;/ - ¢ Approximation of nonlinearities
< Better termination
¢ Measure of criticality
Ve fll or [Pa(Va A
y

But derivatives V,S(z) are not always available/do not always exist

ISNET5



Obtain Derivatives V.S Whenever Possible

Handcoding (HC)

“Army of students/programmers”

? Prone to errors/conditioning

7 Intractable as number of ops increases

Algorithmic/Automatic Differentiation (AD)

“Exact™® derivatives!”
? No black boxes allowed

? Not always automatic/cheap/well-conditioned

Finite Differences (FD)

“Nonintrusive”
7 Expense grows with n
? Sensitive to stepsize choice/noise

—+[Moré & W.; SISC 2011], [Moré & W.; TOMS 2012]

Advances in
Automatic
Differentiation

Gaia)

Caution

High noise levels

.. .then apply derivative-based method (that handles inexact derivatives)

Y ISNET5



Algorithmic Differentiation

— [Coleman & Xu; SIAM 2016], [Griewank & Walther; SIAM 2008]

Computational Graph

@ y=sin(axb)*xc t2
< Forward and reverse modes
< AD tool provides code for your

derivatives e t1

Write codes and formulate

problems with AD in mind! @ O (©

Many tools (see www.autodiff.org):

F OpenAD Matlab ADiMat, INTLAB
F/C Tapenade, Rapsodia Python/R ADOL-C
C/C++ ADOL-C, ADIC
Also done in AMPL, GAMS, JULIA!

ISNET5
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Numerical Differentiation

The Problem: Finite differences sensitive to choice of h

flto + h}z — f(to) ~ F.(to)

[ Sl
0.28f o

X 0.26
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Z
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Numerical Differentiation
The Problem: Finite differences sensitive to choice of h

flto + h}z — f(to) ~ F.(to)

0.28
Z 026
>
)
o
> 0.24
0.22
9&54 —0.}52 —015 —0.;18 -0.46
X
2
Minimize  E{&(h)} =E { (M - f;(to)) }
ISNET5



Optimal Forward Difference Parameter h

Relative Error of f' Estimate

2
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Optimal Forward Difference Parameter h

L 5,2 E?‘ Lo o E?”
ZuLh + 2? <E{&R)} < ZuMh + 2h—2
[0)
T |
E »
= ., h | Variance (noise) dominates
@ 2 oe }X Xx *
L 10 wn SR 1 h 1 Bias (f”") dominates
e A
o -
— * x®
o N YA, 1. Upper bound minimized by
o 10° . Rl h _81/4<€f )1/2
2 Sy ST
'4(% * :x x:“ * 5? =Var‘f;gt0)
E) > T, ¢ pm > | f7
101(;'6 - ) {00 2. When pur > 0, ha is near-optimal:

10~ 10~
Step Size, h
B{em) = Vaner < (M) min BEm).

[Estimating Noisy Derivatives. Moré & W., TOMS 2012]]
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Simulation-Based Optimization

min {f(@) = FS(0)] s <(S(x)) < 0,2 € B}

Optimize expensive, nonlinear functions arising in science & engineering

“parameter estimation”, “model calibration”, “design optimization”, ...

< f :R™ — R objective, S : R™ — RP numerical simulation,  constraints
< Evaluating S means running a simulation modeling some (smooth) process

Ex- S = solving PDEs via finite elements
¢ Here: assume f is from a deterministic computer simulation

© S can contribute to objective and/or constraints, possibly noisy

< Derivatives V.S often unavailable or prohibitively expensive to
obtain/approximate directly

© S (could/must be parallelized) takes secs/mins/hrs/days for 1 x
Evaluation is a bottleneck for optimization

B compact, known region (e.g., finite bound constraints)
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“Simplest” (=Most Naive) Formulation: Blackbox f

f can be a blackbox (executable only or
proprietary/legacy codes)

optimizer

Only give a single output

no problem structure

Computational budget limits number of evaluations

-SIMULATOR-

ISNET5
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S

“Simplest” (=Most Naive) Formulation: Blackbox f

optimizer

-SIMULATOR-

f can be a blackbox (executable only or
proprietary/legacy codes)

Only give a single output

no problem structure

Computational budget limits number of evaluations

Direct search methods (pattern search, Nelder-Mead,
-)

Model- (“surrogate-" )based methods (quadratics, radial

basis functions, ...)

ISNET5 12



Algorithms: Direct Search Methods

 ——
Pattern Search NV

5 —
]
L e — -
asf 7
| >
s |
25| 1'-.\
\
\ I
AN N/
22 24 26 28 3 32 D 36
Easy to parallelize f evaluations Popularized by Numerical Recipes

© Rely on indicator functions: [f(zy +s) <7 f(z)]
© Work with black-box f(x), do not exploit structure F[z, S(x)]

—>[Kolda, Lewis, Torczon, SIREV 2003]
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EEEEEEEEEEEEE—S—S
Trust-Region Methods Use Models Instead of f

To reduce the number of expensive f evaluations
— Replace difficult optimization problem min f(z) with a much simpler one
min {m(z) : x € B}

Classic NLP Technique:

f Original function: computationally
expensive, no derivatives

m Surrogate model: computationally
attractive, analytic derivatives

on ISNETS 14



Basic Trust-Region Idea

Use a surrogate m(z) in place of the unwieldy f(x)

ISNET5

il Optimize over  to avoid expense of

© Trust m to approximate f within
B={zeR": ||z — x| <Ax},

< Obtain next point from
min {m(z) : z € B},

< Evaluate function and update (zg, Ag)
based on how good the model’'s
prediction was.

15 B



Basic Trust-Region Idea

Use a surrogate m(z) in place of the unwieldy f(x)
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il Optimize over  to avoid expense of

© Trust m to approximate f within
B={zeR": ||z — x| <Ax},

< Obtain next point from
min {m(z) : z € B},

< Evaluate function and update (zg, Ag)
based on how good the model’'s
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Basic Trust-Region Idea

Use a surrogate m(z) in place of the unwieldy f(x)

45

Optimize over  to avoid expense of

© Trust m to approximate f within
B={zeR": ||z — x| <Ax},

< Obtain next point from
min {m(z) : z € B},

< Evaluate function and update (zg, Ag)

based on how good the model’'s
prediction was.

~
T

ast /
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Basic Trust-Region Idea

Use a surrogate m(z) in place of the unwieldy f(x)

3 ‘ - \
1 il Optimize over  to avoid expense of

© Trust m to approximate f within
B={x eR": ||z —ak| < Ax}

< Obtain next point from
min {m(z) : z € B},

< Evaluate function and update (zg, Ag)
based on how good the model’'s
prediction was.

\‘

35 /

2] \
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Interpolation-Based Trust-Region Methods

Iteration k:

< Build a model my, interpolating f
on Vg
< Trust my within region By

< Minimize my within By to obtain
next point for evaluation

< Do expensive evaluation

© Update my and By based on how
good model prediction was

& ISNET5 16 =



Interpolation-Based Trust-Region Methods

Iteration k:

< Build a model my, interpolating f
on Vg
< Trust my within region By

< Minimize my within By to obtain
next point for evaluation

< Do expensive evaluation

© Update my and By based on how
good model prediction was
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Interpolation-Based Trust-Region Methods

Iteration k:

20

: : © Build a model my, interpolating f
* on Yy
E : < Trust my within region By

< Minimize my within By to obtain
next point for evaluation

< Do expensive evaluation

© Update my and By based on how
good model prediction was

& ISNET5 16 =



Interpolation-Based Trust-Region Methods

Iteration k:

20

< Build a model my, interpolating f
on Vi

< Trust my within region By

° < Minimize my within By to obtain
: next point for evaluation

< Do expensive evaluation

© Update my and By based on how
good model prediction was

ISNETS 16 =2






Performance of Model-Based Methods

10" |
'y *-8-'pounder
i -4 -pounders
; =v- poundersm
10°| 4% |
LIS
i.' "
;'l_‘v‘"‘-n- AL
Voo T "
10°F “ab, e ]
el o
"1_/‘*"“""*__*__‘
'*v-._" TTA-aLL
10" | ﬂ“.""‘-w- i Sth B
0 100 200 300 400

Number of Evaluations

Optimizing EDF in [Bertolli et al., PRC 2012]
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Parameter Estimation is NOT a Blackbox Problem

Generic:

mzin{f(:t) z e QCR"}

= n decision variables

f :R™ — R objective function
() feasible region,
{z:cg(z) =0,cr(z) <0}
cg (vector of) equality constraints
cr (vector of) inequality constraints

S ISNET5 19 B



Parameter Estimation is NOT a Blackbox Problem

Generic: Typical calibration problem:

f@) = R@)IZ =" Ri(x)

=1

mgn{f(a:)::veQQR”}

= n decision variables

f :R™ — R objective function

Q) feasible region, Ex.- w% (S(x;0;) — di)
{z:crg(x) =0,cr(x) <0} ¢ S(z;6;): numerical simulation

cg (vector of) equality constraints Ex.- Obtain x*(z) by pin f(x)
cr (vector of) inequality constraints

x n coupling constants
R; : R™ — R residual function

Q={z:1<z<u}

¢ Finite bounds (for some ;)
¢ Often dictated by dom(S)

[Ekstrom et al, PRL 2013] [Kortelainen et al, PRC 2014]

ISNET5



Parameter Estimation is NOT a Blackbox Problem

Generic: Typical calibration problem:

f@) = R@)IZ =" Ri(x)

=1

mgn{f(a:):a:EQQIR"}

= n decision variables

f :R™ — R objective function

Q) feasible region, Ex.- w% (S(x;0;) — di)
{z:crg(x) =0,cr(x) <0} ¢ S(z;6;): numerical simulation

cp (vector of) equality constraints Ex.- Obtain x*(z) by pin f(x)
cr (vector of) inequality constraints

x n coupling constants
R; : R™ — R residual function

Q={z:1<z<u}

¢ Finite bounds (for some ;)
¢ Often dictated by dom(S)

[Ekstrom et al, PRL 2013] [Kortelainen et al, PRC 2014]
< Taking advantage of structure should further reduce # of expensive evaluations

ISNET5



Exploiting Nonlinear Least Squares Structure

Obtain a vector of output Ry (z), ..., Ry(x)

@ (Locally) Model each R; by a surrogate q,(:)
Ri(2) ~ (@) = Ri(w) + (@ —a) Tgy + (@ — o) TH (@ — o)

< Employ models in the approximation

Vi) =3 VRiGIR; (@) -5 g,}”_) (&)R; (=) _
V@) =5 VRGO VRi 0T + Ry @ VIR0 - el @sf) (0T + Ri@H{ (o)

Energy Residual [MeV]. Nucleus #10 Energy Residual [MeV), Nucleus #22 Energy Residual [MeV], Nucleus #0

%
o_ ISNET5
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General Nonlinear Least Squares

min f(z) = |R(2)[%

R : R™ — RP “residual vector”
— Think: R;(z) = S(x;6;) — d;

1/2
W norm: |lyllw = (yTWy) /
— W = I, recovers || - ||2

%
6_ ISNET5
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General Nonlinear Least Squares

mxin f(z) = IR(2)|I3¥

R : R™ — RP “residual vector”
— Think: R;(z) = S(x;6;) — d;
1/2
W norm: |lyllw = (yTWy) /
— W = I, recovers || - |2
‘W symmetric positive definite
¢ w=w7T
¢ y"Wy > 0forally #0
P

P
f@) =" Wi;Ri(x)R;(z) >0

i=1j=1

%
Ai ISNET5
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General Nonlinear Least Squares

mxin f(z) = IR(2)|I3¥

R : R™ — RP “residual vector”
— Think: R;(z) = S(x;6;) — d;
1/2
W norm: |lyllw = (yTWy) /
— W = I, recovers || - ||2
‘W symmetric positive definite
¢ w=w7T
¢ y"Wy > 0forally #0
P

P
f@) = Wi;Ri(@)R;(x) 2 0
i=1j=1

¢ W = (diag(c)) ! yields familiar

P 0N g2 P ()2
f(z):z(s(z’el) di) :ZRZ( )

Ti Ti

i=1 i=1

%
QE; ISNET5 21



A Warning

Can | pass this to my favorite ming x2(z) = ||R(z)||? solver?

_
Q% ISNET5
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A Warning

Can | pass this to my favorite ming x2(z) = ||R(z)||? solver?

i 125’ | (Rij(%))2

- >y, (Vi R @)

# Z 12] 1W,]R($)R (z)

Y ISNETS
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A Warning

Can | pass this to my favorite ming x2(z) = ||R(z)||? solver?

12] 1(R )

- (VSRR )

# Z 12 1 Wi Ri(z) R ()
! Allow for complex-valued residuals

I Disallow W; ;R;(xz)R;(xz) <0

In any case, you will likely suffer algorithmically

A ISNET5
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Relationship to Covariance Matrices

Data {(017 dl)v ) (epvdp)}
< Errors independent and normally distributed: d ~ N(u, ),

d; = p(0;;24) + €4, €iNN(O,O',L-2) i=1,...,p.

3 is a p X p diagonal matrix, with ith diagonal entry a?

<

Model, S(6;x) with Gaussian errors:
[S(O132), -+, S(Op;2)]" ~ N (u(52),0),

@ C a (p x p symmetric positive definite) covariance matrix accounting for
correlation between model outputs (i.e., Cov(S(6;; x), S(0;;x)) = Cy ;)

© Assuming model errors are independent of data errors,

[m(@;01) —d, -+, m(;0p) — dp]T ~ N(0,C +3),

1
© Joint likelihood I(z; 0; d) o exp —§R(:r; 0T (C+ =) ' R(z;0)

ISNET5
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Relationship to Covariance Matrices

Data {(017 dl)v ) (epvdp)}
< Errors independent and normally distributed: d ~ N(u, ),

d; = p(0;;24) + €4, €iNN(O,O',L-2) i=1,...,p.

3 is a p X p diagonal matrix, with ith diagonal entry a?

< Model, S(0;z) with Gaussian errors:
[S(O132), -+, S(Op;2)]" ~ N (u(52),0),

@ C a (p x p symmetric positive definite) covariance matrix accounting for
correlation between model outputs (i.e., Cov(S(6;; x), S(0;;x)) = Cy ;)

© Assuming model errors are independent of data errors,

[m(@;01) —d, -+, m(;0p) — dp]T ~ N(0,C +3),

1
© Joint likelihood I(z; 0; d) o exp —§R(z; 0T (C+ =) ' R(z;0)

Warning: C,X can no longer hide behind constants of proportionality

S ISNET5
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NN
Optical Potentials: Incorporating Covariances in W

Elastic
$88% i Folw o || fee e (s (8 B 1R (R ]E i ¥ [ 4 £
%888) & L + e PR P P [S PR I &
5% ols b le le Jo |u [T [ [T [
400
200 ¢ . : .
208'2' L P s i- i [ [
;gg 1@ 10 Ik [ (L [ [
:g% @10 Ol |lo |l |« [ L R [
158&9 (SR [ O [
58 -Q- i i [:
%ﬁ _Q_ A £ i i 2
;ﬁ% ¢ 3 i P [ i
i @ Q i P i
%B .Q_Q @ @ e , i £
Slololob bk R
QR D L L
200 Db b DY DK ZAEe
SO0 DD D VI 2ol A L.
B0 B b DO D K , ef/
00200002000500002040@1 020@1 020® 50 0 53 0M2040 0 204002040 02040 0 204002640 020400 50 0@ 50 00

— Monday talk of Lovell
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aRi(Li) _ 1 85::3;01»!

oz 3 Wi 8:v]

Applications Using the Jacobian [J]; ; =

Residual R(z) € R undergoes a change by ¢ € RP

© Ex.- normalized datum %— is changed to %— + €
k2 k2

% € arg min f%(z) = [R(z)[5 % € arg min f(z) = [R(z) + |3

A second-order expansion of f = ||R(z) + ¢||3 about :

P
F&®) + 2T J(@—%) + %(w —-x)7 (szo(fc) +2> qv2Ri(5<)> (& — %),
=1

When ¢ is small, this quadratic will be convex and hence minimized at
ze —% =2 (V2fO%)) " JTe+ O(|le]?).
When R(%) is small, V2f0(x) =~ 2JTJ and

Fem R+ (jTj)‘lee

%
QE; ISNETS 25 B






Stochastic Optimization

General problem
min { f(z) = B¢ [F(z,8)]: v € X}

< x € R"™ decision variables

< & vector of random variables

¢ independent of
¢ P(&) distribution function for £
¢ £ has support E

@ F(z,-) functional form of uncertainty for decision z

@ X C R"™ set defined by deterministic constraints

A ISNET5
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EEEEEEEEEEE——S—
Approach of Sampling Methods for f(z) = E¢ [F(x,&)]

@ Let 51’52’,,_ 7§N ~ P
< For z € X, define:

1 4
fy(@) =< > F(€)
=1

¢ fn is a random variable (really, a stochastic process)
(depends on (51,52, s 7§N))
¢ Motivated by E¢ [fn(z)] = f(x)

S ISNETS 28 B



Bias of Sampling Methods

o Let f* = f(a*) forz* € X* C X

ﬁ
o_ ISNET5
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Bias of Sampling Methods

o Let f* = f(a*) forz* € X* C X
@ For any N > 1:
Ee [fN] < f* = Eg [F(2",€)]

because

Ee [f{] = Ee [min {F(z,€) : € X}] < min {E¢ [F(z,8)] : 2 € X} = f*

Y ISNETS
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Bias of Sampling Methods

<

Let f* = f(z*) forz* € X* C X
@ For any N > 1:
Ee [fN] < f" = E¢ [F(a7,€)]

because

Ee [f{] = Ee [min {F(z,€) : € X}] < min {E¢ [F(z,8)] : 2 € X} = f*

© Sampling problems result in optimal values below f*

<

fp is biased estimator of f*

S ISNET5 29



Sample Average Approximation

< Draw realizations él,éz,w- ,éN ~ P of (51,52,-~~ ,EN)
© Replace (1) with

1 & .
mm{N;F(x,{): zeX}

¢ fn(z) = *~ =N, F(x, ') deterministic
¢ Follows mean of the N sample paths defined by the (fixed) &

Y ISNETS

)
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Convergence with N

<

A sufficient condition:
¢ For any € > 0 there exists N, so that

’fN(x)—f(x) <e VN>N. VzeX
with probability 1 (wpl).
< Then f}'{, — f* wpl.
(With additional assumptions on f and X* C X):

<

dist(z%,, X*) = 0
< (+ uniqueness, X* = x*):
Ty —x*

Y ISNETS
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Stochastic Approximation Method

Basically just:

Input z0
1. okt — Py {zk - aksk},

© ay a step size

< sk a random direction

A ISNET5
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Stochastic Approximation Method

Basically just:

Input z0
1. 2kt — Py {zk—aksk}, k=0,1,
© ay a step size
< s* a random direction
Generally assume:
. oo — oo 2
Okt gm0 Wk = 00, 2Rt @ < 00 (eg. ar = %)

sk E{Vf(a*)Tsk} >0
s¥ is an ascent direction (in expectation) at x*

@ ISNET5
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Stochastic Approximation Method

Basically just:

Input z0
Lokt Py {2¥ — oy sk}, k=0,1,
© ay a step size
< s* a random direction
Generally assume:
. _ 2 _
QR D opeg k=00, Y72 i < 0o (eg. ap =4

sk E{Vf(a*)Tsk} >0

s¥ is an ascent direction (in expectation) at x*
© “Exact” Stochastic Gradient Descent: sk = V f(z¥)

@ ISNET5



Classic SA Algorithms

© “Original” method is Robbins-Monro (1951)

< Without derivatives: Kiefer-Wolfowitz (1952)
replaces gradient with finite-difference approximation, e.g.,

1. 2kt gk aksk,

¢ where
o F@* 4 haln; €) — F(ah — hylp; €41/2)

2hy

@ ISNET5
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Classic SA Algorithms

“Original” method is Robbins-Monro (1951)

Without derivatives: Kiefer-Wolfowitz (1952)
replaces gradient with finite-difference approximation, e.g.,

1. 2kt gk aksk,

where N N
$F — F(Ik‘l’hk[n;ﬁk)*F(mk7hk1n§fk+l/2)
T 2h,

Requires 2n evaluations every iteration
Can appeal to variance reduction techniques (e.g., common RNs)
Convergence =¥ — 2™ if f strongly convex (near x*), usual conditions on az,
2
@
k
hr — 0, Zk % < oo
. _1 __1
K-W recommend: ay = 3, hi = 173

; ISNET5



Classic SA Algorithms

“Original” method is Robbins-Monro (1951)

Without derivatives: Kiefer-Wolfowitz (1952)
replaces gradient with finite-difference approximation, e.g.,

1. 2kt 2P — sk, k=0,1,...

where N N
o F(z" + hyIn; €) — F(a" — by I €811/2)
o 2h,

Requires 2n evaluations every iteration
Can appeal to variance reduction techniques (e.g., common RNs)

Convergence =¥ — 2™ if f strongly convex (near x*), usual conditions on az,
2

@
hr — 0, Zk h—% < oo
K-W recommend: ap = % hy = ﬁ
Extensions such as SPSA (Spall) reduce number of evaluations (see randomized
methods slides. . . )
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Derivative-Based Stochastic Gradient Descent

Input z0; Repeat:
1. Draw realization ék ~ P of £k
2. Compute s* = V, F(z*; £F)
3. Update zft1 < Px {zF — aysF}
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Derivative-Based Stochastic Gradient Descent

Input z0; Repeat:
1. Draw realization ék ~ P of £k
2. Compute s* = V, F(z*; £F)
3. Update zft1 < Px {zF — aysF}

© Vo F(z;£F) is an unbiased estimator for V f(z*)

.Y ISNET5 34 O



Derivative-Based Stochastic Gradient Descent

Input z0; Repeat:

1. Draw realization fk ~ P of ¢k

2. Compute s*

= VmF(xk;ék)

3. Update zft1 « Px {zF — ay sk}

© VyF(zF;€F) is an unbiased estimator for V f(z*)

© Can incorporate curvature if desired
-1
e.g., B¥s" an unbiased estimator for (VQf(wk)) YV f(z®)

< Can work with subgradients

© Can even output =V = % Zszl x

k
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EEEEEEEEEEEEE—S—S
Randomized Algorithms for Deterministic Problems

min{f(z) :x € X CR"}

< f deterministic
< Random variables are now generated by the method, not from the problem

< Often assume properties of f
e.g., Vf is L'-Lipschitz:
IVf(@) = Vil <Lle—yl| VoyeX

e.g., f is strongly convex (with parameter 7):

f@) 2 f@) + @ =) Vi) + Dl —ul® VeyeX
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Basic Algorithms

Matyas (e.g., 1965):

< Input zV; repeat:

2. Evaluate f(z* 4+ u*)

k k

ki1 ¥ +u
3.w+={k
T

1. Generate Gaussian u”

(centered about 0)

if f(z* +uk) < f®)
otherwise.
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Basic Algorithms

Matyas (e.g., 1965):

Input z0; repeat:
1. Generate Gaussian u” (centered about 0)
2. Evaluate f(z* 4+ u*)
3 gkt = {Tk +ub if f(2F +uF) < f(2P)

zF otherwise.

Poljak (e.g., 1987)

Input 29, {h, ux }i; repeat:

1. Generate a random u”® € R"
k k k
) T u®) — f(z .
PR s N, f(@® + pru™) = f( )uk,
Hi

hy > 0 is the step size
pr > 0 is called the smoothing parameter
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Applying SA-Like Ideas to Special Cases

mln{f(x) = %iFl(:x) :xGX}
i=1

m huge

%
Ai ISNET5
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Applying SA-Like Ideas to Special Cases

min{f(a: ZF(::: xeX}

m huge
Ex.- Nonlinear Least Squar¢5 Warning: likely nonconvex!
Fi(z) = ||¢(z;60") — d'|]?
Evaluating ¢(-, ) requires solving a large PDE
Ex.- Sample Average Approximation
Fi(w) = R(w;€')
&' € Q a scenario/RV realization
(and R depends nontrivially on &%)
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Applying SA-Like Ideas to Special Cases

min{f(a: ZF(::: xeX}

m huge

Ex.- Nonlinear Least Squar¢5 Warning: likely nonconvex!

Fi(z) = ||¢(z;60") — d'|]?

Evaluating ¢(-, ) requires solving a large PDE
Ex.- Sample Average Approximation

Fi(w) = R(w;€')

&' € Q a scenario/RV realization

(and R depends nontrivially on &%)
The good:

¢ V(@) =3, VFi(z)

The bad:

< m still huge

° ISNET5
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Residual Stochastic Averaging

min{f(a:) = %ZFz(w) :ZBEX}
i=1

“F;(x) is a member of a population of size m”
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Residual Stochastic Averaging

min{f(w) = %ZFz(x) :xeX}
i=1

“F;(z) is a member of a population of size m”

< Randomly sample S, a subset of size |S|, from {1, .- ,m}
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Residual Stochastic Averaging
1 m
min{f(w) = —ZFZ(w) tT € X}
m =1
“F;(x) is a member of a population of size m”

< Randomly sample S, a subset of size |S|, from {1, .- ,m}

< Under minimal assumptions:

E{éZFi(x)}:f(x) and E{éZVFi(x)}:Vf(z)

€S €S
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Residual Stochastic Averaging

min{f(w) = %ZFZ(w) :weX}
=1

“F;(x) is a member of a population of size m”

< Randomly sample S, a subset of size |S|, from {1, .- ,m}

< Under minimal assumptions:

E{éZFi(x)}:f(x) and E{éZVFi(x)}:Vf(z)

€S €S

© Use —Vfs = —ﬁ > ies VFi(z) as direction s*
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Residual Stochastic Averaging

min{f(w ZF(w xeX}

“F;(x) is a member of a population of size m”

© Randomly sample S, a subset of size |S|, from {1, .- ,m}

© Under minimal assumptions:

{lslz:F(x}:f(x) and {|S|ZVF(x}: f(2)

€S €S

© Use —Vfs = —ﬁ > ies VFi(z) as direction s*

< How to choose S?
S
E{|Vfs, — VII*} = ( | ') E{|Vfs, — V£I?}

= sampling without replacement (Sy) gives lower variance than does sampling
with replacement (S;)
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NN
Bayesian Optimization for Approximate Global Optimization

Statistical approaches (e.g., EGO [Jones et al., 1998])
< enjoy global exploration properties,
< excel when simulation is expensive, noisy, nonconvex

... but offer limited support for constraints
[Schonlau et al., 1998]; [Gramacy & Lee, 2011]; [Williams et al., 2010]

S ISNETS 39 ©



NN
Bayesian Optimization for Approximate Global Optimization

Statistical approaches (e.g., EGO [Jones et al., 1998])
< enjoy global exploration properties,
@ excel when simulation is expensive, noisy, nonconvex

... but offer limited support for constraints
[Schonlau et al., 1998]; [Gramacy & Lee, 2011]; [Williams et al., 2010]

Combine (global) statistical (objective-only) optimization tools

a) response surface modeling/emulation: training a flexible model f* on
{2 y(M1k_ to guide choosing z(F+1)
€.g., [Mockus, et al., 1978], [Booker et al., 1999]

b) expected improvement (EI) via Gaussian process (GP) emulation [Jones, et al., 1998]
. with a tool from mathematical programming

c) augmented Lagrangian (AL): for handling nonlinear constraints [Powell, 1969],
[Bertsekas, 1982], ...

Similar approach for combining other data terms
[Picheny, Gramacy, W., Le Digabel. NIPS 2016]; [Gramacy et al, Technometrics 2016]
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Expected Improvement

Improvement: I(z) = max{0, f&, — Y ()}, fEo= r{lin . fzh)
e

.....

Expectation of improvement (El) has closed-form expression:

E{I(@)} = (Fhin — 1 (@) (M) T on(@)o (M)

oh(x) ok ()
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Expected Improvement

Improvement: I(z) = max{0, f&, — Y ()}, fEo= r{lin . fzh)
i=1,...,

Expectation of improvement (El) has closed-form expression:

ko —uk(x k _ k(p
B @)} = (Fhin — 1 (@) (fm7u<>> o) ¢<Jgﬂak7(:)<>>

oh(x)

8 M (X) —,

< balance
exploitation and
exploration
0.06 o .
e.g., EGO: [Jones, et
50.05
al., 1998]

10.04
10.03
40.02
10.01
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Separate, Independent Component Modeling

O f — Yy(z)
Ce=(c1,...,cm) — Ye(z) = (Ye, (2),...,Ye,, (2))

Distribution of composite random variable serves as a surrogate for L 4(x; X, p):

Y(2) = Y;(2) + AT Ya(e) + % i max(0, Yz, (2))?
Jj=1
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Separate, Independent Component Modeling

O f — Yy(z)
Ce=(c1,.. o om) — Ye(r) = (Yoo (2),. .., Yo, ()
Distribution of composite random variable serves as a surrogate for L 4(x; X, p):

Y(2) = Y;(2) + AT Ya(e) + 2i i max(0, Yz, (2))?
Jj=1

Simplifications when f is known:

< Composite posterior mean available in closed form; e.g., under GP priors:

E{Y (2)} = uf(2) + AT pg (x) + 2% > E{max(0,Ye, (2))*}
Jj=1

< Generalized El [Schonlau et al., 1998] gives

. @)\ (@Y pb @) (k@)
E{max(0, Ye; ()2} = o—zj x) |:(1+ <Cflc“j (:B)) ) o] <a’gj (x)> + U:;Cj @ ¢<O'§j (x)>:|
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Summary

Move beyond “blackbox” optimization

Exploiting structure yields better solutions, in fewer simulations

Promote optimization/modeling considerations during code development
Correlated residuals a first step

Highlights attention that must be paid to model and data uncertainties

SO0 0 O O

Can repeat for nonGaussian, MAPs, ...

www.mcs.anl.gov/tao (Optimization toolkit www.mcs.anl.gov/~wild (Get in touch!
g

Grateful to relevant coauthors

M. Bertolli, A. Ekstrom, C. Forssén, R. Gramacy, G. Hagen, M. Hjorth-Jensen, D. Higdon, G.R. Jansen,

M. Kortelainen, E. Lawrence, T. Lesinski, A. Lovell, R. Machleidt, J. McDonnell, J. Moré, T. Munson, H. Nam,
W. Nazarewicz, F.M. Nunes, E. Olsen, T. Papenbrock, A. Pastore, P.-G. Reinhardt, J. Sarich, N. Schunck,

M. Stoitsov, J. Vary, K. Wendt, and others
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Summary

Move beyond “blackbox” optimization

Exploiting structure yields better solutions, in fewer simulations

Promote optimization/modeling considerations during code development
Correlated residuals a first step

Highlights attention that must be paid to model and data uncertainties

SO0 0 O O

Can repeat for nonGaussian, MAPs, ...

www.mcs.anl.gov/tao (Optimization toolkit www.mcs.anl.gov/~wild (Get in touch!
g

Grateful to relevant coauthors

M. Bertolli, A. Ekstrom, C. Forssén, R. Gramacy, G. Hagen, M. Hjorth-Jensen, D. Higdon, G.R. Jansen,

M. Kortelainen, E. Lawrence, T. Lesinski, A. Lovell, R. Machleidt, J. McDonnell, J. Moré, T. Munson, H. Nam,
W. Nazarewicz, F.M. Nunes, E. Olsen, T. Papenbrock, A. Pastore, P.-G. Reinhardt, J. Sarich, N. Schunck,

M. Stoitsov, J. Vary, K. Wendt, and others

Thank You!
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