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Bayesian vs. Classical Statistics
(in a nutshell…) 

Source: http://xkcd.com/1132/ 



Bayesian Inference 101 

• Bayesian approach is a complete inferential approach!

– Inference includes point estimation and model testing

– Precise accounting for uncertainty: full param distribs. + prediction
– Decision thanks to strong probability statements about

uncertainty which are conditional on the data

• Probability statements: Bayesian vs. frequentist
– Bayesian credible intervals: “conditional on all data, and based on

probability modeling, we know that there is a 95% probability that

the true value of a parameter is in the quoted credible interval.”

– Classical confidence intervals: “By repeating a random experiment

many times, and producing a confidence interval for a parameter

each time, we know that 95% of these intervals will contain the true

(population) parameter.”

Probability modeling replaces the need for repeated experiments!



Bayesian Inference 101 (continued)

• Bayes' theorem links conditional and marginal

probabilities of stochastic events (or parameters):
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But from whence do 
we get the models?



Bayesian Inference 101 (end)

• Bayes' theorem for random variable densities has exact same form,

except probabilities are replaced by densities

• Denominator p(B) in Bayes’ theorem is not really important for computing
posteriors of unobserved parameter/variable when data B is fixed:

just sample from the numerator p(B|A)p(A) and renormalize.

• Hierarchical Bayes? What on earth is that? It’s easy:

– non-hierarchical Bayes  =

• one probabilistic model (likelihood) for data B given unobservable A

• another probabilistic (prior) model for unobservable A

– Hierarchical Bayes =
• Same as above, except there is a separate set of data, NOT

related to B, which helps construct the prior model for A.

Prior Model for A contains "EXTERNAL" DATA
More levels: external data can contain model w/ more data
Etc., etc. with more and more hierarchy levels if needed 

•

•

•



What can hierarchical Bayes do for you ?
• When a parameter summarizes an entire section of a discipline, 

there might be data and models to support that parameter
•

By building that model and those data into your prior, you gain 
possible access to a critical look at that unrelated section of your 
discipline. You might make friends, or enemies.
But at least you are doing hierarchical Bayes !!!

•

•

It may be that people in your discipline consider a variable U 
which cannot be directly observed but which explains a lot. By 
building a model for U as it effects observables, & another model 
for U as it is affected by external data, you have yourself a 
hierarchy where you can reconstruct this unobservable U !!

•

When a prior model for the variable of interest seems contrived or  
otherwise grossly inadequate, given what people know, use data for 
that knowledge to build a prior model for the variable.

That model, and those data, might seem physically unrelated to 
the problem at hand.



What can you do for the hierarchy ?
PARTICIPATORY HIERARCHICAL MODEL BUILDING

Speak with all your colleagues, friends and enemies, to discover 
what physics might inform portions of your modeling which 
don't fit nicely in your model.
Speak with the statisticians working with you to make sure that 
the priors they are using, including possible external models, 
make sense to you. Ask about prior uncertainty levels. Speak 
about your own tolerance for uncertainty. Test your models or 
emulators for sensitivity or robustness with respect toparameters. 

•

•

Important if you want to reconstruct a latent or fictitous variable:
* If it's fictitious, support for its imaginary existence better be good!
* Just like in frequentist statistics, it's easy to overfit, but Bayesian 
stat can work with a lot less data than frequentist, so don't be afraid.
* Use the model to check that uncertainty levels are realistic, honest

•



Bayesian Analysis:  Paleotemperature 
reconstuction using proxies and forcings.
• Design and implement a Bayesian hierarchical model

linking past global temperatures with external data like 
CO2 and volcanism and with observed proxies like tree 
rings: use a linear framework with normal errors

Pt  =  α0  + α1Tt  +      σt t

Tt  =  b0  + b1Vt  + b2St + b3Ct  +      µt ηt

• Here P is an aggregate of proxies, T is the global mean 
temperature, t is from year 1000 to 2000, and V, S, C 
are external data: volcanism, solar irradiance, 
greenhouse gases; σt ,µt noise intensities; ε,η = noises.
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Bayesian Analysis:  

U.S. Public R&D spending and TFP growth 

• Design and implement a Bayesian hierarchical model

linking TFP growth to R&D stocks, and stocks to R&D

spending: use a linear framework with normal errors
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Bayesian Analysis:  

U.S. Public R&D spending and TFP growth 
 

• Following Alston et al (2010), we adapt a gamma lag 

distribution structure with a 50-year lag span, under 

which R&D lags are parameterized by two factors: 

• λ helps determine how fast the distribution peters out, 

• δ helps determine the distribution’s shape and maximum 
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Bayesian Analysis:  

U.S. Public R&D spending and TFP growth 

• Steps for implementation and estimation 

– Define the prior distribution for model parameters 

 

 

– Compute (mathematically) posterior distribution of 

each variable given every other variable, thanks to 

prior and likelihood models in hierarchy, and data. 

– Gibbs Sampler: iteratively update each posterior 

distribution by repeatedly sampling a large number of 

times (computational technique easy in R) 

 

 

, 
Truncated Normal with 

means and ranges from 

Alston et al (2010) 

~ (0,1); ~ (2,0.1)N IG 



Preliminary Results:  
U.S. Public R&D experience : 1949-2011 using USDA data 

 

• Estimated point elasticity of U.S. Ag. TFP with respect to R&D 

stocks (Alston et al 2010 in grey vs. mean in yellow) 



Preliminary Results:  
U.S. Public R&D experience : 1949-2011 using USDA data 

 

• Estimated R&D lag parameters in color, Alston et al 2010 in black 

• We use their expert opinion: prior 0.85 < δ < 0.9 and 0.7 < λ < 0.8 



Preliminary Results:  
U.S. Public R&D experience : 1949-2011 using USDA data 

 

• Estimated R&D stocks (Alston et al 2010 in black vs. our results) 



Preliminary Results:  
U.S. Public R&D experience : 1949-2011 using USDA data  

• Reconstructed TFP Index (USDA data: black vs. our results) 

• A crucial “validation metric” : Empirical Coverage Probability 

– # data points inside yellow band must be roughly 95% of total # data points 



Preliminary Results: non-Bayes comparison 
U.S. Public R&D experience : 1949-2011 using USDA data  

• Reconstructed TFP Index (USDA data: black vs. our OLS results) 

• Uncertainty is very grossly underestimated: 

– ECP is ridiculously far from nominal value of 95%. 



Counterfactual Analysis:  
+30% increase in U.S. Public R&D in 1950-59 only  

• Increase in U.S. Ag. Output from increased R&D investments 

– (how much would this investment have meant to U.S. ag. output?) 



Counterfactual Analysis:  
+30% increase in U.S. Public R&D in 1950-59 only 

 

• Net Present Values & Benefit Cost Ratios (our OLS results in grey 

and Bayesian results in yellow): uncertainty accuracy matters ! 

UB: Net Present Cost of Investment = 23 B USD 

 

State-level BC ratios from Alston et al (2010):  

Range[14,74 ]  Mean: 39.7 

 



Methodological conclusions 
• Bayes allows full evaluation of uncertainty on all parameters. 

• No other method can estimate lag parameters from data. 

• We use expert opinion on lags (from Alston et al. 2010) and 

sharpen the conclusions, lowering uncertainty. 

• Hierarchical structure exploits all relevant data (TFP and public 

spending), to construct unobserved R&D stocks.  

• Any question, realized or counterfactual, can be answered in 

precise probabilistic terms. 

• Model selection can be based on validation metrics (ECP) : 

• Bayes appears far superior to least squares regression 

 linear models are more appropriate than log-linear ones 

 uncertainty quantification is adequately conservative 

 lag uncertainty is high 

 R&D uncertainty is comfortable, and robust to lag structure  

 

 



Quantitative policy implications 

• Lag parameter estimates and uncertainty suggest : 

 peak of spending impact probably occurs later than guessed 

 impact is likely to be sustained for longer 

 non-negligible possibility that impact might occur more 

quickly, but betting on this would be unwise .  

• Given lag uncertainty, a public investment policy should favor 

steady investments spread out and sustained over time : 

 we will check by running various future spending scenarios 

 then doing forecasting via future TFP Bayes reconstruction 

• Previous R&D estimates are on the high side, suggesting : 

 policy-makers may need more conservative expectations of 

spending effectiveness 

 counterfactual analysis with historical data tells same story 



Preliminary Results: change to Log model 
U.S. Public R&D experience : 1949-2011 using USDA data 

 

• Estimated point elasticity of U.S. Ag. TFP with respect to R&D 

stocks (Alston et al 2010 in grey vs. mean in yellow) log model 



Preliminary Results:  
U.S. Public R&D experience : 1949-2011 using USDA data 

 

• Estimated R&D lag parameters (Alston et al 2010 in black vs. our 

results) log model 



Counterfactual Analysis:  
+30% increase in U.S. Public R&D in 1950-59 only 

 

• Increase in U.S. Ag. Output from increased R&D investments 

log model 



Counterfactual Analysis:  
+30% increase in U.S. Public R&D in 1950-59 only 

 

• Net Present Values and Benefit Cost Ratios (our OLS results in 

grey and Bayesian results in yellow) log model 



Preliminary Results:  
U.S. Public R&D experience : 1949-2011 using USDA data  

• Reconstructed TFP Index (USDA data: black vs. our results) 

• A crucial “validation metric” : Empirical Coverage Probability 

– # data points inside yellow band must be roughly 95% of total # data points 

log model 

UB: Reconstructed TFP using the log model 
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