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Bayesian vs. Classical Statistics

DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

THEN, MROWS TWO DICE. IF THEY
BEOTH COME UP SiX, IT UES TO US.

OHERWISE, ITTELLS THE TRUF.

LETS TRY.

DETECTOR! HAS THE
SN GONE NO?

' ao

N

(in a nutshell...)

FREQUENTIST STASTICIAN: BAYESIAN STATISIOAN:
THE PROGABILITY OF TRIS RESULT
HAPPENING BY CHANCE 15 5,=0027 BET YOU $50

OMNCE p<0.05, T CONCLUDE
THAT THE SUN HAS EXPLODED.

ia

Source: http://xkcd.com/1132/




Bayesian Inference 101

« Bayesian approach is a complete inferential approach!
— Inference includes point estimation and model testing
— recise accounting for uncertainty: full param distribs. prediction

— Decision thanks to strong probability statements about
uncertainty which are conditional on the data

 Probability statements: Bayesian vs. frequentist

= : “conditional on all data, and based on
probability modeling, we know that there is a 95% probability that
the true value of a parameter is in the quoted credible interval.”

— Classical confidence intervals: “By repeating a random experiment
many times, and producing a confidence interval for a parameter
each time, we know that 95% of these intervals will contain the true
(population) parameter.”

Probability modeling replaces the need for repeated experiments!



Bayesian Inference 101 ontinued)

« Bayes' theorem links conditional and marginal
probabilities of stochastic events (or parameters):

— p(B‘A)p(A) But from whence do

we get the models?

p(AB) o(8)
/ 4

Prior Distribution

summarizes the

Posterior Distribution o )
) : oC —
updated information p (B ‘A) P (A) ;':]'tclillggx\:?s\t:n'l

about unknown T or parameter
events/parameters o _ This is where én
given data and prior Likelihood of Data given EXPERT
information possible events or
parameter values OP| NIOI_\I
can come in.

contains all information
relevant for inference



Bayesian Inference 101 ena)

e Bayes' theorem for random variable densities has exact same form,
except probabilities are replaced by densities

e Denominator p(B) in Bayes’ theorem is not really important for computing
posteriors of unobserved parameter/variable when data B is fixed:

just sample from the numerator p(B|A)p(A) and renormalize.

« Hierarchical Bayes? What on earth is that?

— non-hierarchical Bayes =
« one probabilistic model (likelihood) for data B given unobservable A
* another probabilistic (prior) model for unobservable A

— 1erarchical Bayes

* Same as above, except there is a separate set of data, NOT
related to B, which helps construct the prior model for A.

* rior odel for contains
 ore levels external data can contain model w more data
« ftc., etc. with more and more hierarchy levels if needed



ha ca hierarchical Bayes do for you ?

hen a parameter summari es an entire section of a discipline,
there might be data and models to support that parameter

hat model, and those data, might seem physically unrelated to
the problem at hand.

By building that model and those data into your prior, you gain
possible access to a critical look at that unrelated section of your
discipline. ou might make friends, or enemies.

hen a prior model for the variable of interest seems contrived or
otherwise grossly inadequate, given what people know, use data for
that knowledge to build a prior model for the variable.

It may be that people in your discipline consider a variable U
which cannot be directly observed but which explains a lot. By
building a model for U as it effects observables, another model
for U as it 1s affected by external data, you have yourself a
hierarchy where you can reconstruct this unobservable U !!



ha ca you do for he hierarchy ?
[ 1 I I B1 I

ea with all your colleagues, friends and enemies, to discover
what physics might inform portions of your modeling which
don t fit nicely in your model.

ea with the statisticians working with you to make sure that
the priors they are using, including possible external models,
make sense to you. sk about prior uncertainty levels. peak
about your own tolerance for uncertainty. est your models or
emulators for sensitivity or robustness with respect toparameters.

ortanti you ant to reconstruct a latent or ictitous aria le
If it s fictitious, support for its imaginary existence better be good!
ust like 1n frequentist statistics, 1t s easy to overfit, but Bayesian
stat can work with a lot less data than frequentist, so don t be afraid.
se the model to check that uncertainty levels are realistic, honest



Bayesian Analysis: aleo e era ure
reco s uc io usi ro iesa dforci s

* Design and implement a Bayesian hierarchical model
linking past global temperatures with external data like
and volcanism and with observed proxies like tree
rings use a linear framework with errors

Pt — O.{O +a1Tt + O-tgl‘
Tt — bO +b1Vt +b25t+b3Ct + ;th Tlt

Here P 1s an aggregate of proxies, 7'1s the global mean
temperature, ¢ 1s from year 1000 to 2000, and V, S, C
are external data: volcanism, solar irradiance,

greenhouse gases; O, noise intensities; &1 = noises.
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Temp. Anomalies
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Bayesian Analysis:
U.S. Public R&D spending and TFP growth

 Design and implement a Bayesian hierarchical model
linking TFP growth to R&D stocks, and stocks to R&D
spending: use a linear framework with errors

T, =, +o4RD, +,Cl, + ot + &, o

RD Z, OIBRDIXD T €rp,OrD

T, Agricultural total factor productivity
RD, R&D knowledge capital stocks

C1, Corn moisture stress index

t Time trend

XD R&D spending

E1.Or, &gy, Ogp EITOT tEImMS



Bayesian Analysis:

U.S.

Public R&D spending and TFP growth

 Following Alston et al (2010), we adapt a gamma lag
distribution structure with a 50-year lag span, under

W
* A

nich R&D lags are parameterized by two factors: 1,0
nelps determine how fast the distribution peters out,

0 helps determine the distribution’s shape and maximum

(i+1)72 (1)

49
RD,i — L S i =1
>+ go:ﬂ””




Bayesian Analysis:
U.S. Public R&D spending and TFP growth

 Steps for implementation and estimation
— Define the prior distribution for model parameters

o~ N(0,1);0~1G(2,0.1) A, S mommaniranges iom
Alston et al (2010)
— Compute (mathematically) posterior distribution of
each variable given every other variable, thanks to

prior and likelihood models in hierarchy, and data.

— Gibbs Sampler: iteratively update each posterior
distribution by repeatedly sampling a large number of
times (computational technigue easy in R)



Preliminary Results:
U.S. Public R&D experience : 1949-2011 using USDA data

« Estimated point elasticity of U.S. Ag. TFP with respect to R&D
stocks (Alston et al 2010 in grey vs. mean in yellow)

Subzample of elazs1:RD Hizstogram of elas1:RD
11 |
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sample prior= 015 mean= 0.218



Preliminary Results:
U.S. Public R&D experience : 1949-2011 using USDA data

« Estimated R&D lag parameters in color, Alston et al 2010 in black
» \We use their expert opinion: prior and

U.S5. R&D Lag Parameters: Bayesian Estimates (Red) vs. Guesstimate (Black)

Weilghts:[0,1]

Year



Preliminary Results:
U.S. Public R&D experience : 1949-2011 using USDA data

Estimated R&D stocks (Alston et al 2010 in black vs. our results)
U.5. R&D 5tocks: Bayesian Estimates (Red) vs. Guesstimate (Black)

in B. USD
M3 [

Year



Preliminary Results:
U.S. Public R&D experience : 1949-2011 using USDA data
« Reconstructed TFP Index (USDA data: black vs. our results)

* A crucial “validation metric”” : Empirical Coverage Probability
— # data points inside yellow band must be roughly 95% of total # data points

U.5. TFP Index: Bayesian Estimates (Red) vs. Actual Data (Black)

1949=1.0



Preliminary Results: non-Bayes comparison
U.S. Public R&D experience : 1949-2011 using USDA data
» Reconstructed TFP Index (USDA data: black vs. our OLS results)

« Uncertainty is very grossly underestimated:
— ECP is ridiculously far from nominal value of 95%.

U.5. TFP Index: OLS Estimates (Red) vs. Actual Data (Black)

1949=1.0

Year



Counterfactual Analysis:
+30%o increase in U.S. Public R&D in 1950-59 only

 Increase in U.S. Ag. Output from increased R&D investments
— (how much would this investment have meant to U.S. ag. output?)

U.5. Ag. Output: +30% R&D Exp. in 1950s(Red)

NN
|

inB.USD

M2
|

| | |
1960 1980 2000
Year



Counterfactual Analysis:
+30%o increase in U.S. Public R&D in 1950-59 only

* Net Present Values & Benefit Cost Ratios (our OLS results in grey
and Bayesian results in yellow): uncertainty accuracy matters !

Hizstogram of NPV:in B USD @ 3% ds.rate Histogram of BC Ratio: (@ 3% ds.rate

1 1 1 | 1 1
o ] 2 o

: UB: Net Present Cost of Investment = 23 B USD

50

30 40

- State-level BC ratios from Alston et al (2010):
“Range[14,74 ] Mean: 39.7

Frequency
20

10

| T | | I | I |
200 0 200 400 OO 10 0 10 20 30

OLS.est= 513 mean = 221.809 OLS est= 23.34 mean = 10662



Methodological conclusions

® Bayes allows full evaluation of uncertainty on all parameters.

® No other method can estimate lag parameters from data.

® We use expert opinion on lags (from Alston et al. 2010) and
sharpen the conclusions, lowering uncertainty.

® Hierarchical structure exploits all relevant data (TFP and public
spending), to construct unobserved R&D stocks.

® Any C
precise

Oro

® Mode

S€E

® Bayes ap
» linear models are more appropriate than log-linear ones
» uncertainty guantification is adequately conservative
» lag uncertainty is high
» R&D uncertainty is comfortable, and robust to lag structure

uestion, realized or counterfactual, can be answered In

pabilistic terms.
ection can be based on validation metrics (ECP) :
pears far superior to least squares regression




Quantitative policy implications

® Lag parameter estimates and uncertainty suggest :
» peak of spending impact probably occurs later than guessed
» Impact is likely to be sustained for longer
» non-negligible possibility that impact might occur more
quickly, but betting on this would be unwise .
® Given lag uncertainty, a public investment policy should favor
steady Investments spread out and sustained over time :
» we will check by running various future spending scenarios
» then doing forecasting via future TFP Bayes reconstruction
® Previous R&D estimates are on the high side, suggesting :
» policy-makers may need more conservative expectations of
spending effectiveness
» counterfactual analysis with historical data tells same story



Preliminary Results: change to Log model
U.S. Public R&D experience : 1949-2011 using USDA data

« Estimated point elasticity of U.S. Ag. TFP with respect to R&D
stocks (Alston et al 2010 in grey vs. mean in yellow) log model

Subsample of elas1:RD Histogram of elas1:RD
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sample OLS.est= 0.589 mean = 0.345



Preliminary Results:
U.S. Public R&D experience : 1949-2011 using USDA data

« Estimated R&D lag parameters (Alston et al 2010 in black vs. our
results) log model

U.5. R&D Lag Parameters: Bayesian Estimates (Red) vs. Guesstimate (Black)
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Counterfactual Analysis:
+30%o increase in U.S. Public R&D in 1950-59 only

 Increase in U.S. Ag. Output from increased R&D investments
log model

U.5. Ag. Output: +30% RE&D Exp. in 1950s(Red)
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Counterfactual Analysis:
+30%o increase in U.S. Public R&D in 1950-59 only

* Net Present Values and Benefit Cost Ratios (our OLS results in
grey and Bayesian results in yellow) log model

] ] Hiztogram of BC Ratio: @ 3% ds.rate
Histogram of NPV:in B USD @ 3% ds.rate
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Preliminary Results: log model
U.S. Public R&D experience : 1949-2011 using USDA data
« Reconstructed TFP Index (USDA data: black vs. our results)

* A crucial “validation metric”” : Empirical Coverage Probability
— # data points inside yellow band must be roughly 95% of total # data points

U.5. TFP Index: Bayesian Estimates (Red) vs. Actual Data (Black)

UB: Reconstructed TFP using the log model

1949=1.0
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