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◦ E.g. how to learn and/or make decisions in the face of uncertainty, and

even what knowledge is in this context. (What does Random mean?)

◦ The Bayesian paradigm gives a comprehensive and natural structure to

represent and deal with uncertainty, which addresses these concerns.

• b) Allows the incorporation of many sources of information:

◦ Due to its comprehensive and appropriate representation of uncertainty,

many sources of information can be amalgamated into one calculation.

◦ These can be from disparate data sources, expert knowledge or even

logical argument.

◦ Bayesian statistics can be viewed as a natural extension to pure logic

once uncertainty is introduced.
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◦ Provides an actual probability of a Hypothesis being true P (H0|z), (and
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(P (Z > z|H0)), that medical science is currently reeling from).

◦ The results of Bayesian statistics, in terms of probabilities, can be

directly inserted into Decision Theory, to advise on any possible

decision: e.g. which experiment to perform to best learn about a

particular scientific question.

• Interestingly, Bayesian statistics tells us what we need to put in, in order to

get what we want out.

• E.g. if you want posterior probabilities out, you have to put prior probabilities

in. Prior requirement not a disadvantage.

• Subjective Bayesian statistics: the pure form!
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and the likelihood π(z|y), then we get everything we want from the

posterior π(y|z), found from Bayes theorem:
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• Can be fast for certain conjugate problems, but usually computationally

demanding: requires MCMC or equivalent sampling algorithm.

• However if we are only prepared to specify prior means, variances and

covariances, we can use Bayes Linear statistics to obtain:

Ez(y) = E(y) + Cov(y, z)Var(z)−1(z − E(z))

Varz(y) = Var(y)− Cov(y, z)Var(z)−1Cov(z, y)

• The adjusted mean Ez(y) and variance Varz(y) are very fast to calculate

as just uses matrix operations.
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• In many scientific disciplines complex computer simulators are employed to

help understand corresponding real world physical processes.

• For example oil reservoir simulators are used to analyse oil reservoirs, flood

simulators to analyse floods etc.

• These simulators, referred to as Computer Models, share many attributes,

and also many problems.

• Often they take a long time to run, (minutes, hours, days or even weeks)

and require the specification of a large number of input parameters that we

represent as a vector x.

• An area of (Bayesian) Statistics has arisen to deal with such models and the

many problems they present.

• This area is referred to as the study of Computer Models, or as Uncertainty

Analysis (preferred) or Uncertainty Quantification (less preferred as

sometimes used in a weaker sense).
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• These have now been employed in a range of scientific disciplines:

◦ Cosmology (galaxy formation simulations),

◦ Climate science (climate models of global warming),

◦ Environmental sciences (flood and rainfall runoff models),

◦ Systems biology (genetic and metabolic network models),

◦ Epidemiology (agent based stochastic HIV models).

◦ Oil industry (oil reservoir models and geology models).

◦ Many more...

• These techniques could be of substantial use to the Nuclear physics

community.
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• All these areas share similar problems e.g.

◦ history matching to learn about acceptable input parameters that ensure

good matches between outputs and historical data,

◦ forecasting/predicting future outputs with appropriate uncertainty,

◦ Decision theory: deciding on which future experiments to perform (or

data to pay for),

◦ and many others.

• All of these problems require a careful analysis of all relevant uncertainties.

• Speed is always a problem for complex models so often we employ

‘Emulators’: fast stochastic approximations to the Computer Model.
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• Going to History Match a Galaxy formation simulation known as Galform.

• This involves learning about acceptable inputs x to the Galform model,

using observed data z.

• We use emulators and implausibility measures to cut out input space

iteratively.

• We will discuss relevant uncertainties: model discrepancy, observational

errors, function uncertainty etc.

• The History Matching approach described is completely general, and can

be used for any model that is relatively slow to run and has lots of inputs.

• Vernon, I., Goldstein, M., Bower, R. G., Galaxy Formation: “Bayesian

History Matching for the Observable Universe”. Statistical Science 29

(2014), no. 1, 81–90.
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• History Matching is an efficient technique that seeks to identify the set X of

all acceptable inputs x.

• Often X only occupies a tiny fraction of the original input space.

• This set X may be empty: we do not presuppose that any such inputs exist.

• This is the main difference between History Matching and the related

technique of Probabilistic Bayesian Calibration.

• The later is a useful technique, but assumes a single ‘best input’ x∗ and

gives its posterior distribution π(x∗|z), via the standard Bayesian update,

using e.g. MCMC.

• This involves the specification of many complex multivariate distributions

related to all uncertain quantities of interest, which may or may not be

warranted at this stage.



Andromeda Galaxy and Hubble Deep Field View

• Andromeda Galaxy: closest large galaxy to our own milky way.

• Hubble Deep Field: covers approximately 2 millionths of the sky but

contains thousands of galaxies.
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• World leading cosmology group at the ICC are interested in modelling

galaxy formation in the presence of Dark Matter.

• First a Dark Matter simulation is performed over a volume of (1.63 billion

light years)3. This takes 3 months on a supercomputer.

• Galform takes the results of this simulation and models the evolution and

attributes of approximately 1 million galaxies.

• Galform requires the specification of 17 unknown inputs x in order to run.

• It takes approximately 1 day to complete 1 run (using a single processor).

• The Galform model produces lots of outputs f(x), some of which can be

compared to observed data z from the real Universe.
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• PROBLEM: We want to identify the set of all inputs X that lead to

acceptable matches between model outputs f(x) and observed data z.

• 17-dimensional input space is large! If we did the simplest grid based

search (setting each input to max or min), we would require 217 runs.

• This would take approximately 180 years to complete (on one processor)!

• We would really want a higher definition, so would want say 1017 runs...

This would take far longer than the current age of the Universe.

• SOLUTION: Construct a Bayesian Emulator, which is a stochastic function

that approximates the Galform model, and is fast to evaluate: our emulators

were approximately 107 times faster than Galform.

• Use the Emulator to find the acceptable inputs.



The Dark Matter Simulation: (thanks to VIRGO Consortium)



The Galform Model



Galform Outputs: The Luminosity Functions

• Galform provides multiple output data sets.

• Initially we analyse the luminosity functions which give the number of

galaxies per unit volume, for each luminosity.

• Bj Luminosity: corresponds to density of young (blue) galaxies

• K Luminosity: corresponds to density of old (red) galaxies



Input Parameters

• To perform one run, we need to specify numbers for each of the following 17

inputs:

vhotdisk: 100 - 550 VCUT: 20 - 50

aReheat: 0.2 - 1.2 ZCUT: 6 - 9

alphacool: 0.2 - 1.2 alphastar: -3.2 - -0.3

vhotburst: 100 - 550 tau0mrg: 0.8 - 2.7

epsilonStar: 0.001 - 0.1 fellip: 0.1 - 0.35

stabledisk: 0.65 - 0.95 fburst: 0.01 - 0.15

alphahot: 2 - 3.7 FSMBH: 0.001 - 0.01

yield: 0.02 - 0.05 eSMBH: 0.004 - 0.05

tdisk: 0 - 1

• What input values should we choose to get ‘acceptable’ outputs?
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• Basic problem is that we pick inputs:
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• And find that after 3 Days of Runtime:

• 3rd run is rubbish.
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• Pick 60 inputs and find after 60 Days of Runtime:

• All runs are rubbish.
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11 Outputs Chosen

• We do 1000 runs using carefully chosen inputs (a space-filling maximin latin

hypercube design).

• (Again all runs are found to be unacceptable.)

• We choose 11 outputs that are representative of the Luminosity functions

and emulate these functions fi(x).



Design: Latin Hypercubes

• Design: Construct a batch of runs of the model using a space filling

maximin Latin Hypercube design:
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• These designs are both space filling and approximately orthogonal, both

desirable features for fitting emulators.



Design: Latin Hypercubes

• Design: Construct a batch of runs of the model using a space filling

maximin Latin Hypercube design:
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• These designs are both space filling and approximately orthogonal, both

desirable features for fitting emulators.

• We evaluated 1000 runs of the model for the first Wave.
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Linking Model to Reality

• We represent the model (Galform) as a function, which maps the 17 inputs

x to the 11 outputs f(x).

• We use the “Best Input Approach” to link the model f(x) to the real system

y (i.e. the real Universe) via:

y = f(x∗) + ϵ

where we define ϵ to be the model discrepancy and assume that ϵ is

independent of f(x∗) and x∗.

• Finally, we relate the true system y to the observational data z by,

z = y + e

where e represent the observational errors.

• Often, scientists may be able to specify say E[ϵ], E[e] (often zero), and

Var[ϵ], Var[e].
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Galform: Emulation

• For each of the 11 outputs we pick active variables xA then emulate

univariately (at first) using:

fi(x) =
∑

j

βij gij(x
A) + ui(x

A) + δi(x)

• The
∑

j βij gij(x
A) is a 3rd order polynomial in the active inputs.

• ui(xA) is a Gaussian process.

• The nugget δi(x) models the effects of inactive variables as random noise.

• The ui(xA) have covariance structure given by:

Cov(ui(x
A
1 ), ui(x

A
2 )) = σ2

i exp[−|xA1 − xA2 |
2/θ2i ]

• The Emulators give the expectation E[fi(x)] and variance Var(fi(x)) at

point x for each output given by i = 1, .., 11, and are fast to evaluate.
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• We perform an initial wave 1 set of n runs at input locations

x(1), x(2), . . . , x(n) giving a column vector of model output values

Di = (fi(x
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use Bayes Theorem to update our beliefs π(fi(x)) about f(x):
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π(Di|fi(x))π(fi(x))

π(Di)

where π(fi(x)) and π(fi(x)|D) are the prior and posterior pdfs for fi(x).



Emulation Theory: Bayes Theorem

• We perform an initial wave 1 set of n runs at input locations

x(1), x(2), . . . , x(n) giving a column vector of model output values

Di = (fi(x
(1)), fi(x

(2)), . . . , fi(x
(n)))T

• If we had provided prior distributions for each part of the emulator we could

use Bayes Theorem to update our beliefs π(fi(x)) about f(x):

π(fi(x)|Di) =
π(Di|fi(x))π(fi(x))

π(Di)

where π(fi(x)) and π(fi(x)|D) are the prior and posterior pdfs for fi(x).

• This follows the standard Bayesian statistics paradigm, however this

involves a detailed, full specification of the joint prior distribution: a complex

and difficult task, and is hard to calculate.
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can use Bayes Linear methodology.
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Emulation Theory: Bayes Linear Methods

• There is a better way: if we are instead prepared to specify just the

expectations, variances and covariances of the parts of the emulator, we

can use Bayes Linear methodology.

• This is an alternative version of Bayesian statistics that is easier to specify

and far easier to calculate with.

• Instead of Bayes Theorem we use the Bayes linear update:

EDi
(fi(x)) = E(fi(x)) + Cov(fi(x), Di)Var(Di)

−1(Di − E(Di))

VarDi
(fi(x)) = Var(fi(x))− Cov(fi(x), Di)Var(Di)

−1Cov(Di, fi(x))

where EDi
(fi(x)) and VarDi

(fi(x)) are the Bayes Linear adjusted

expectation and variance for fi(x) at new input point x, and are all that are

needed for the subsequent implausibility measures and history match.



Model Discrepancy

Before calculating the implausibility we need to assess the Model Discrepancy

and Measurement error.

Model Discrepancy Var(ϵ) = Φ40 + Φ9 + ΦE

• Φ40: Discrepancy term due to choosing first 40 sub-volumes from full 512

sub-volumes. Assess this by repeating 100 runs but now choosing 40

random regions.

• Φ9: As we have neglected 9 parameters (due to expert advice) we need to

assess effect of this (by running latin hypercube design across all 17

parameters)

• ΦE : Expert assessment of model discrepancy of full model with 17

parameters and using 512 sub-volumes

It is straightforward to find the multivariate expressions for Φ40 and Φ9, but ΦE

requires more careful thought.



Model Discrepancy: Subjective ΦE

• Experts assert that there are clear ways that the model could be defective.

• Model predicts too many (or too few) galaxies. This would lead to a highly

correlated model discrepancy across all outputs.

• Model systematically gets the colours of galaxies wrong: results in too few

(too many) blue galaxies and too many (too few) red galaxies. Gives

negatively correlated model discrepancy between outputs from different

coloured (bj and K) luminosity graphs.

• We therefore assume the model discrepancy term ΦE has the form:

ΦE = a

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 b .. c .. c
b 1 .. c . c
: : : : : :
c .. c 1 b ..
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: : : : : :
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• Obtain values for a, b and c from expert assessment.



Expert Assessment of ΦE: Elicitation Tool

• We obtain expert assessments of a, b and c using an elicitation tool.



Measurement Error

Observational Errors Var(e) are composed of 4 parts:

• Normalisation Error: correlated vertical error on all luminosity output points

• Luminostiy Zero Point Error: correlated horizontal error on all luminosity

points

• k + e Correction Error: Outputs have to be corrected for the fact that

galaxies are moving away from us at different speeds (light is red-shifted),

and for the fact that galaxies are seen in the past (as light takes millions of

years to reach us)

• Galaxy Production Error: assumed Poisson process to describe galaxy

production

The multivariate form for each of these quantities is straightforward(!) to

calculate.



Implausibility Measures (Univariate)

We can now calculate the Implausibility I(i)(x) at any input parameter point x
for each of the i = 1, .., 11 outputs. This is given by:

I2(i)(x) =
|EDi

(fi(x))− zi|2

(VarDi
(fi(x)) + Var[ϵi] + Var[ei])
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Implausibility Measures (Univariate)

We can now calculate the Implausibility I(i)(x) at any input parameter point x
for each of the i = 1, .., 11 outputs. This is given by:

I2(i)(x) =
|EDi

(fi(x))− zi|2

(VarDi
(fi(x)) + Var[ϵi] + Var[ei])

• EDi
(fi(x)) and VarDi

(fi(x)) are the emulator expectation and variance.

• zi are the observed data and Var[ϵi] and Var[ei] are the (univariate)

Model Discrepancy and Observational Error variances.

• Large values of I(i)(x) imply that we are highly unlikely to obtain

acceptable matches between model output and observed data at input x.

• Small values of I(i)(x) do not imply that x is good!
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Implausibility Measures (Univariate)

• We can combine the univariate implausibilities across the 11 outputs by

maximizing over the current outputs:

IM (x) = max
i∈Q

I(i)(x)

• We can then impose a cutoff

IM (x) < cM

in order to discard regions of input parameter space x that we now deem to

be implausible.

• The choice of cutoff cM is often motivated by Pukelsheim’s 3-sigma rule,

which does not require precise distributions.

• We may simultaneously employ other choices of implausibility measure:

e.g. multivariate, second maximum etc.



Multivariate Implausibility Measure

• As we have constructed a multivariate model discrepancy, we can define a

multivariate Implausibility measure:

I2(x) = (E[f(x)]− z)TVar[f(x)− z]−1(E[f(x)]− z),

which becomes:

I2(x) = (E[f(x)]− z)T (Var[f(x)] + Var[ϵ] + Var[e])−1(E[f(x)]− z)

• where Var[f(x)], Var[ϵ] and Var[e] are now the multivariate emulator

variance, multivariate model discrepancy and multivariate observational

errors respectively (all 11×11 matrices).

• We now have two implausibility measures IM (x) and I(x) that we can use

to reduce the input space.

• We impose suitable cutoffs on each measure to define a smaller set of

non-implausible inputs.



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



History Matching via Implausibility: a 1D Example



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj

4. Evaluate the new implausibility functions Ii(x), i ∈ Qj+1 only over Xj



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj

4. Evaluate the new implausibility functions Ii(x), i ∈ Qj+1 only over Xj

5. Define a new (reduced) non-implausible region Xj+1, by IM (x) < cM ,

which should satisfy X ⊂ Xj+1 ⊂ Xj



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj

4. Evaluate the new implausibility functions Ii(x), i ∈ Qj+1 only over Xj

5. Define a new (reduced) non-implausible region Xj+1, by IM (x) < cM ,

which should satisfy X ⊂ Xj+1 ⊂ Xj

6. Unless (a) the emulator variances are now small in comparison to the other

sources of uncertainty (model discrepancy and observation errors) or (b)

computational resources are exhausted or (c) all the input space is deemed

implausible, return to step 1



Iterative History Matching for Reducing Input Space.

We use an iterative strategy to reduce the input parameter space. Denoting the

current non-implausible volume by Xj , at each stage or wave we:

1. Design and perform a set of runs over the non-implausible input region Xj

2. Identify the set Qj+1 of informative outputs that we can emulate easily

3. Construct new emulators for fi(x), where i ∈ Qj+1 defined only over Xj

4. Evaluate the new implausibility functions Ii(x), i ∈ Qj+1 only over Xj

5. Define a new (reduced) non-implausible region Xj+1, by IM (x) < cM ,

which should satisfy X ⊂ Xj+1 ⊂ Xj

6. Unless (a) the emulator variances are now small in comparison to the other

sources of uncertainty (model discrepancy and observation errors) or (b)

computational resources are exhausted or (c) all the input space is deemed

implausible, return to step 1

7. If 6(a) true, generate a large number of acceptable runs from the final

non-implausible volume X , with appropriate sampling.
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2D Minimised Implausibility Projections: Wave 1

• Minimised Implausibility Projections: at each 2D grid point, minimise the

implausibility IM (x) over the 15D hypercube.

• If a point on these plots is implausible (coloured red), then it will be

implausible for any choice of the 15 other inputs.

• If a point is green, it may or may not prove to be an acceptable input.
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• Optical Depth Plots: at each 2D grid point plot the proportion of the 15D

latin hypercube points that survive the cutoff IM (x) < cM .

• These plots show the ‘depth’ of the non-implausible volume Xj for wave j,

at each grid point.

• Shows where the majority of non-implausible points can be found, but not

necessarily where the best matches are.
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Why do we reduce space in waves? Why not attempt to do it all at once?

Because this requires an accurate emulator valid over whole input space.

• In contrast, the iterative approach is far more efficient.

• At each wave the emulators are found to be significantly more accurate (in

that Var[f(x)] becomes smaller). This is expected as:

1. We have ‘zoomed in’ on a smaller part of the function, it will be

smoother and most likely easier to fit with low order polynomials.

2. We have a much higher density of runs in the new volume, and hence

the Gaussian process part of the emulator will do more work.

3. We can identify more active variables, leading to more detailed

polynomial and Gaussian process parts of the emulator, as previously

dominant variables are now somewhat suppressed.

4. We can hence add more outputs to the set of informative and easy to

emulate outputs Qk.

• This is a major strength of the History Matching approach.



3D Minimised Implausibility and Optical Depth Plots

• 3D projections created using the Fast Approximate Emulator approach.
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2D Implausibility Projections: Stage 4 (0.12%)
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Conclusions

• Bayesian Statistics: the right thing to do!

• Bayesian analysis of complex models: many techniques of possible use to

the nuclear physics community.

• Iterative History Matching via implausibility: very efficient technique for

learning about the set of acceptable inputs X .

• Relies upon Bayesian emulation and a careful analysis of all relevant

uncertainties present in the problem: function uncertainty, structural model

discrepancy, observed errors etc.

• Often appropriate to check model performance and analyse model

structure. Can be a useful precursor to a fully Bayesian analysis over the

whole input space, if such an analysis is deemed worthwhile.

• We now have a large set of acceptable (Wave 5) runs that can be analysed

by the Cosmologists, and used to explore other features of Galform.
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