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Motivation:
 Calculation of potential energy surfaces (PES)

Gaussian Process Regression (GPR):
* Background

 Motivation - can we use GPR to reduce the CPU time needed to
calculate a PES?

 Method; iteration

Results for PES for fission of 24°Pu :
« 1D
« 2D

Future work



Motivation: potential energy
surfaces (PES)

e E.g. fission:
* Nucleus slowly deforms, from

roughly spherical shape to 2
distinct nuclei

* Nucleus has different potential
energy for different deformations

* PES can yield properties like path
taken to fission, lifetime, mass
distributions of fission fragments

* Computationally expensive NDFT is
used - 5-10 CPU hours per calculation

Calculated PES for fission of 2°Fm

e 1000s of calculations required

* By how much can we reduce the
number of calculations with GPR?



(Gaussian Process Regression
(GPR)

Regression method from machine learning

Outputs a model/prediction which is a smooth interpolation of points
on a surface

Predictions at unknown locations on surface are made using all
calculated points

Most useful for expensive computer simulations, with smoothly-varying
outputs

Surface Y(x) is modelled as the sum of a regression model (comprising k
regression functions f;) and a random (Gaussian) process Z:

V() = zﬁ,f,(x) +2()

Used previously in atmospherlc chemistry, locating mineral ores,
modelling of oceans and diseases, atomic physics



GPR example in 1D
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(Gaussian Process Regression
(GPR) - kernels

* Gaussian correlation model (covariance kernel), for d dimensions:
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where g2 is variance of random process Z
* 0; are ‘characteristic length-scales’ = control spatial correlation lengths

72 is ‘nugget variance’ > treats numerical instabilities caused by jitters/kinks
on surface
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(Gaussian Process Regression
(GPR) - method

e Use previously calculated surfaces

* Choose a sample of calculated points

* Normalise the sample

* Use these ‘design points’ to emulate surface

 Compare emulated surface with original surface
(how accurate was the emulation?)

* |teration:
* Add new point at location of max o from last iteration
* Re-emulate



GPRIn 1D
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Schunck et al. — Phys. Rev. C 90,
054305



Original slice
represented by
red points
Design points
in blue

New points in
green

Blue line gives
difference
between GPR
prediction and
original slice 2
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iteration = 001
num_points = 22
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theta = 21.927

0 100 200 300 400 500

G20 [b]

Difference from "true" slice
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Occasionally,
addition of one
new point
completely
changes the
estimation
kernel
parameters

When this
happens, the
prediction
changes
completely, and
the confidence
grow suddenly



GPRIn 2D

80

60

Qg (b¥?)

40

20

Fission barriers (bottom left) and scission ‘cliff’
(right-hand edge) pose problems



Difference from "true" surface
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Conclusions and future work

To successfully perform regression for surface with very different
behaviours, need one or both of the following:

* non-stationary correlation model - 6; allowed to vary across surface

* better pre-processing of data, to make it more normally distributed before
regression is performed

Better iteration method:
* Bias against selection of new points at edges
* More cautious selection of new points to avoid sudden changes in GPR output
* Multiple new points at once

* We know location of fission barriers/ other tricky areas — take advantage of this
knowledge

Compare fission observables from emulated and ‘normal’ surfaces

Emulating higher dimensional fission surfaces:
* |deally need 5D surface for description of fission
* GPR should provide a better speedup for higher dimensional surfaces



Thank youl!
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Design point selection for GPR

e Latin Hypercube Sampling (LHS) provides better
coverage of surface
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