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Neutron-Induced Fission
What it is and why we should try to measure/compute
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Applications of Induced Fission
Simulate reactor technology on a computer

" Critical assembly is small amount
of fissile material (= fission as
soon as hit by neutrons)

" Criticality (neutrons out = neu-
torns in) depends on geometry,
composition, etc.

" Multi-physics problem
— Material physics
— Transport (of particles in material)
~ Nuclear physics

" Fission fragment distributions im-
portant input
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Fission in Basic Science
Fission determines the relative proportion of elements in the universe

" Heavy elements are formed in nu-
clear reactions in neutron-rich en-
vironments

" Various astrophysical scenarios:

— Recent LIGO-VIRGO observations
confirm neutron star mergers option

— Other options (supernovae, black
holes, etc.) not ruled out yet

" Nuclear reaction networks com-
bined with astrophysical models
predict observed abundances

— Fission terminates r-process

— Fission cycling
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Theory of Induced Fission
Basic Concepts

" Simple idea (Bohr and Wheeler, 1939): Nucleus deforms itself until
it breaks into two fragments

" Theorist’s job:
— Predict how energy of the nucleus changes with deformation(s)
— Predict the probability for the nucleus to have a given deformation
— Relate characteristics of the fragments with deformation

" What makes it complicated

— ldeally, only use basic constituents of nucleus (neutrons and protons) and
their interaction

— System is ruled by quantum mechanics, process is time-dependent, and
other niceties
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Theory of Induced Fission
A Few More Technical Details

Theoretical framework is nuclear density functional theory

Same energy functional gives potential energy surface and collective inertia (=re-
sistance to motion in collective space)

Time-dependent theory on top of DFT gives probability as function of time —and
thus fragment yields
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Theory of Induced Fission
Sources of Uncertainties

Parameters of the energy density functional (about a dozen)

Size of collective space = how many deformations (or other indica-
tors) do you need to characterize fission?

Recipe to compute collective inertia: most popular method relies
on additional approximations

Scission lines = the point/line/surface that separates the whole nu-
cleus from split configurations

Numerical precision of calculations at large deformations

Initial probability in the collective space
— No theory whatsoever about that
— Focus on this talk
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Initial State

A Simple One-Parameter Problem

" Model the initial probability distribution as a weigted sum of ei-
genvalues (known)
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Baseline Calculation
We use the SkKM* EDF
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Design Runs
Sources of Uncertainties

" Vary o from 0.1 to 3 by step of 0.1
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Emulator
Gaussian Process Model Trained on 18 Design Runs

" Relative error less than 240py,
2% (except at the bound- __ 1 a
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Conclusions

" Fission product yields are outputs of complex workflows (2 differ-
ent codes, computationally expensive PES, different sources of

uncertainties)

" Short term outlook
— Calibration phase requires likelihood function: how to define it?

— Take experimental discrepancies into account?

" Longer-term outlook
— Propagate uncertainties of EDF parameters
— Size of design runs could be huge

— Set up GPM for PES itself and plug in to emulator for time evolution

* See talk by M. Shelley
* Challenge: emulate discontinuities
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We do not know how the heaviest elements are
formed

= Heavy elements are formed by nuclear reactions
involving rapid neutron capture (r-process) in stellar
environments

= Exact astrophysical conditions of the r-process
(neutron star merger? core-collapse supernova?)

rematrgakrewn must be tested by nucleosynthesis
simulations

. R-process abundances calculated in 3 different astrophysical
i scenario compared to solar abundances

Credit: Davis Dulin of NC State
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Credit: Daniel Price (U/Exeter) and Stephan Rossw og (Int.
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r-process Sensitivity to Mass Models

= 10 mass models: DZ33, FRDM95, FRDM12, 1073 9 Cold S Reheating § Solar
WS3, KTUY, HFB17, HFB21, HFB24, SLY4, § 4
UNEDFO g
B 405
2 10
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Measured Decay Rates and Masses

NUBASE 2016
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Reverse Engineering r-process calculation

Astrophysical conditions Nucleosynthesis code

Fission Yields —> (PRISM)

Rates (n capture, f-decay, fission....)

i }

Nuclear masses Abundance

prediction
\ Markov Chain Monte /

Carlo (MCMC)
Likelihood function



MCMC evolution CHOT
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Rare Earth Peak with MCMC solutions
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Results

= Astrophysical trajectory:
hot, low entropy wind such as in a merger
accretion disk

= 50 parallel,independent MCMC runs

= 21 runsinredband,? runsin orange band

= Average y>~20 forred and orange solutions
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Uncertainties in UNEDF1

e Uncertainty Quantification &;g}g
e Estimate model errors . =
e Define predictive power 3/
e Extrapolate beyond experiment fj«) ~
e Bayesian inference methods 5 %
e Posterior distribution available @E%
McDonnell et al. PRL 114 (2015) 122501
e Statistical uncertainties can be wl
propagated ol
e Inputs for r-process with UQ ol
e Requires High Performance ” -
Computing “f
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Abundance Patterns

e Neutron star merger
. 1
* 50 calculations of the o
2 o
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e Solar abundances o001 :
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The r-process informs DFT
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Astrophysical data can constrain DFT parameters
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DFT informs the r-process
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Effect of new data on uncertainties

e Upcoming neutron rich
measurements

AME2016

e CERN, TRIUMF, GSI, & =

RIKEN, FRIB, ...

e Two-fold reduction of
uncertainty

o (MeV)

e Measured masses
* Improving mass models

e Simulated mass tables
assuming FRIB data
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Anticipated improvements
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