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Theoretical framework for the study of nuclei and

nuclear matter:

Nuclear Energy Density Functionals (EDFs) consitute

our unique theoretical framework for a microscopic de-

scription of the Isobaric Analog State (IAS) energy in

medium and heavy nuclei and on the nuclear matter

Equation of State (EoS) in a consistent way.

〈Ψ|H|Ψ〉 ≈ 〈Φ|Heff |Φ〉 = E[ρ] (?)

• Commonly derived from an effective Hamiltonian solved at
the Hartree-Fock level.
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Nuclear Energy Density Functionals:
Main types of successful EDFs are derived from Hartree-Fock

(mean-field) calculations based on an effective interaciton

Relativistic mean-field models, based on Lagrangians where
effective mesons carry the interaction:

Lint = Ψ̄Γσ(Ψ̄, Ψ)ΨΦσ +Ψ̄Γδ(Ψ̄, Ψ)τΨΦδ

−Ψ̄Γω(Ψ̄, Ψ)γµΨA
(ω)µ −Ψ̄Γρ(Ψ̄, Ψ)γµτΨA

(ρ)µ

−eΨ̄Q̂γµΨA
(γ)µ

Non-relativistic mean-field models, based on Hamiltonians
where effective interactions are proposed and tested:

Veff
Nucl = V

long−range
attractive + V

short−range
repulsive + VSO

◮ Fitted parameters contain (important) correlations

beyond the mean-field
◮ Nuclear energy functionals are phenomenological → not

directly connected to any NN (or NNN) interaction
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The Nuclear Equation of State: Infinite System
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* The nuclear EoS can be written in good approximation as:

e(ρ, β) ≈ e(ρ, β = 0) + S(ρ)β2 where β ≡ ρn − ρp

ρn + ρp
* SNM can be expanded around ρ0 and define some useful
parameters:

e(ρ, 0) ≈ e(ρ0, 0) + Kε2 where ε ≡ ρ0 − ρ

3ρ0
* Symmetry energy can be also expanded around ρ0 and define
some useful parameters:

S(ρ) ≈ J− Lε+ Ksymε2
5



Examples: EoS parameters from nuclear observables

EDFs provide a good description of nuclear masses (∼

0.1%), charge radii (∼ 0.1− 1%) and collective oscillation

frequencies around the g.s. (GR excitation energies)

Some physical insights may be obtained from simple

considerations (models) while studyting microscopically a

given observable:
◮ B(A,Z) determine very precisely e(ρ0, 0) ≡ e0 (−16 MeV)

δe0

e0
∼ 1% ⇒ δB(208Pb) ∼ 30 MeV (2%)

A small change on e(ρ0, 0) will predict unrealistic B in a heavy
nucleus

◮ The interior density (ρ0) in most of existing nuclei is 0.16

fm−3

δρ0

ρ0
∼ 5% ⇒ δr(208Pb) ∼ δr0A

1/3 ∼ 0.1 fm (2%)

A small change will predict not very good radii and this will/may
also affect B
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Examples: EoS parameters from nuclear observables

Isovector properties (e.g. S(ρ)) are thought to be well deter-

mined by the neutron skin thickness (∆rnp ≡ 〈r2n〉1/2 − 〈r2p〉1/2)

of a heavy nucleus such as 208Pb):

Macroscopic model: ∆rnp ∼
1
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Physical Review Letters 106, 252501 (2011)

Micorscopic models

(EDFs) confirm such a

relation

However the experimental

precision and accuracy

needed in the measurment

of this property is very

challenging nowadays.

[Exp. from strongly interacting probes: ∼ 0.15− 0.22 fm (Physical Review C 86 015803 (2012))].
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Isovector properties in nuclei

◮ In the past, neutron properties in stable medium and heavy
nuclei have been mainly measured by using strongly interacting
probes and (N− Z)/A explored is small.

⇓
Limited knowledge of isovector properties

(Not precise: model dependent analysis due to incomplete
understanding of the strong interaction in the low-energy

regime important for nuclei.)

◮ At present,

◮ the use of RIBs has opened the possibility of measuring
properties of nuclei with large N− Z

◮ parity violating elastic electron scattering, a model
independent technique, has allowed to estimate the weak
(neutron) form factor at low q of 208Pb

⇓
Promising perspectives for the near future

1) We need to reliably assess the quality of our extrapolations
2) Find observables that are not sensitive to the strong force
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Covariance analysis: χ2 test

◮ Observables O used to calibrate the parameters p

χ2(p) =
m∑

ı=1

(

Otheo.
ı − Oref.

ı

∆Oref.
ı

)2

◮ Assuming that the χ2 can be approximated by an
hyper-parabola around the minimum p0,

χ2(p) − χ2(p0) ≈
1

2

n∑

ı,

(pı − p0ı)∂pı
∂p

χ2(p − p0)

where M ≡ 1

2
∂pı

∂p
χ2 (curvature m.) and E ≡ M−1 (error m.).

◮ errors between predicted observables A

∆A =

√

√

√

√

n∑

ı

∂pı
AEıı∂pı

A

◮ correlations between predicted observables,

cAB ≡ CAB√
CAACBB

where, CAB = (A(p) −A)(B(p) − B) ≈
n∑

ı

∂pı
AEı∂p

B
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Example: 2 different fitting protocols and models:
SLy5-min: use constant error for a given observable

◮ Binding energies of 40,48Ca, 56Ni, 130,132Sn and 208Pb with a
fixed adopted error of 2 MeV

◮ the charge radius of 40,48Ca, 56Ni and 208Pb with a fixed
adopted error of 0.02 fm

◮ the neutron matter Equation of State calculated by Wiringa et al.
(1988) for densities between 0.07 and 0.40 fm−3 with an adopted
error of 10%

◮ the saturation energy (e(ρ0) = −16.0± 0.2 MeV) and density
(ρ0 = 0.160± 0.005 fm−3) of symmetric nuclear matter.

DD-ME-min1: use relative error for all observables

◮ binding energies, charge radii, diffraction radii and surface
thicknesses of 17 even-even spherical nuclei, 16O, 40,48Ca,
56,58Ni, 88Sr, 90Zr, 100,112,120,124,132Sn, 136Xe, 144Sm and
202,208,214Pb. The assumed errors of these observables are 0.2%,
0.5%, 0.5%, and 1.5%, respectively.
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Covariance analysis: SLy5-min and DD-ME-min1

• L and the neutron skin thickness in 208Pb are shown to be
correlated.
• L and the energy of the Isobaric Analog State are also
correlated (not shown here)
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Covariance analysis: SLy5-min and DD-ME-min1

SLy5-min DDME-min1
A A0 σ(A0) A0 σ(A0) units

SNM

ρ0 0.162 ± 0.002 0.150 ± 0.001 fm−3

e(ρ0) −16.02 ± 0.06 −16.18 ± 0.03 MeV
m∗/m 0.698 ± 0.070 0.573 ± 0.008

J 32.60 ± 0.71 33.0 ± 1.7 MeV
K0 230.5 ± 9.0 261 ± 23 MeV
L 47.5 ± 4.5 55 ± 16 MeV

208Pb
∆rnp 0.1655 ± 0.0069 0.20 ± 0.03 fm

• Statistical error on ∆rnp (and IAS energy) much smaller

than systematic error

• In addition, statistical uncertainties depend on the fitting
protocol, that is on the data (or pseudo-data) and associated

errors used for the fits
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The isobaric analog state energy: ∆Ed

• Definition: (N,Z+ 1) → (N+ 1, Z): T0 g.s. isospin of (N+ 1, Z),
its IAS in (N,Z+ 1) will be the lowest state where T = T0.

• Analog state can be defined: |A〉 = T−|0〉
〈0|T+T−|0〉

• Displacement energy

EIAS ≈ ∆Ed ≡ EA − E0 = 〈A|H|A〉− 〈0|H|0〉 = 〈0|[T+[H, T−]|0〉
〈0|T+T−|0〉

E
exp
IAS easy to measure and depends only on isospin

symmetry symmetry breaking terms: Coulomb and to

less extent (few %) strong interaction
13



The displacement energy: contributions

[H, T−] , 0 ? essentially Coulomb potential but not only

Table: Estimate of the different effects on ∆Ed in 208Pb. Physical
Review Letters 23, 484 (1969).

∆Ed Correction

Coumb direct ∼ 20 MeV
Coulomb exchange ∼ -300 keV
n-p mass difference ∼ tens keV
Electromagnetic spin-orbit ∼ - tens keV
Finite size effects ∼ - 100 keV
Short range correlations ∼ 100 keV
Isospin impurity ∼ -100 keV
Isospin symmetry breaking ∼ - 250 keV

∼ 19 MeV

E
exp
IAS = 18.826± 0.01 MeV. Nuclear Data Sheets 108, 1583 (2007).
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Coulomb direct displacement energy

∆Ed ≈ ∆EC,direct
d =

1

N− Z

∫

[ρn(~r) − ρp(~r)]U
direct
C (~r)d~r

where Udirect
C (~r) =

∫
e2

|~r1 −~r|
ρch(~r1)d~r1

Assuming a uniform neutron and proton distributions of
radius Rn and Rp respectively, and ρch ≈ ρp one can find

∆Ed ≈ ∆EC,direct
d ≈ 6

5

Ze2

Rp

(

1−
1

2

N

N− Z

Rn − Rp

Rp

)

One may expect: the larger the ∆rnp the smallest EIAS
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EIAS in Energy Density Functionals (No Corr.)
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Corrections: For the first time within self-consistent

HF+RPA

Within the HF+RPA one can estimate the EIAS accounting
(in an effective way) for short-range correlations, isospin

impurities and effects of the continuum (if a large sp base
is adopted).

• Coulomb exchange exact (usually Slater approx.):

Ux,exact
C ϕi(~r) = −

e2

2

∫

d3r ′
ϕ∗

j (~r
′)ϕj(~r)

|~r−~r ′|
ϕi(~r

′)

• The electromagnetic spin-orbit correction to the nucleon
single-particle energy (non-relativistic),

εemso
i =

 h2c2

2m2
i c

4
〈~li · ~si〉xi

∫
1

r

dUC

dr
|Ri(r)|

2

where xi: gp − 1 for Z and gn for N; gn = −3.82608545(90) and
gp = 5.585694702(17), Ri → Rnl radial wf.
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Corrections:
• Finite size effects (assuming spherical symmetry):

ρch(q) =

(

1−
q2

8m2

)

[

GE,p(q
2)ρp(q) +GE,n(q

2)ρn(q)
]

−
πq2

2m2

∑

l,t

[

2GM,t(q
2) −GE,t(q

2)
]

〈~l · ~s〉
∫∞

0

dx
j1(qx)

qx
|Rnl(x)x

2|2

• The lowest order correction in the fine-structure constant to the

Coulomb potential
eZ

r
consists on the selfenergy and the vacuum

polarization corrections:

Vvp(~r) = −
2

3

αe2

π

∫

d~r′
ρ(~r′)

|~r−~r′|
K1

(

2

Że
|~r−~r′|

)

where e is the fundamental electric charge, α the fine-structure
constrant, Że the reduced Compton electron wavelength and

K1(x) ≡
∫∞

1

dte−xt

(

1

t2
+

1

2t4

)

√

t2 − 1
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Corrections:

• Isospin symmetry breaking (Skyrme-like): two parts

charge symmetry breaking +

VCSB = Vnn − Vpp

charge independence

breaking∗

VCIB =
1

2
(Vnn + Vpp) − Vpn

VCSB(~r1,~r2) ≡
1

4
[τz(1) + τz(2)]

{

s0(1+ y0Pσ)

+
1

2
s1(1+ y1Pσ)

[

P′2δ(~r1 −~r2) + δ(~r1 −~r2)P2
]

+s2(1+ y2Pσ)~P′
· δ(~r1 −~r2)~P

}

VCIB(~r1,~r2) ≡
1

2
τz(1)τz(2)

{

u0(1+ z0Pσ)

+
1

2
u1(1+ z1Pσ)

[

P′2δ(~r1 −~r2) + δ(~r1 −~r2)P2
]

+u2(1+ z2Pσ)~P′
· δ(~r1 −~r2)~P

}

where ~P ≡
1

2ı
(~∇1 − ~∇2) acts on the right and P′ is its

complex conjugate acting on the left and Pτ/σ are the

usual projector operators in isospin and spin spaces.

* general operator form τz(1)τz(2)−
1

3
~τ(1) · ~τ(2). Our

prescription τz(1)τz(2) not change structure of

HF+RPA.

• Opposite to the other corrections, ISB contributions depends

on new parameters that need to be fitted!
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Isospin symmetry breaking in the medium:
• keeping things simple: CSB and CIB interaction just delta

function depending on s0 and u0. Different possibilities:

→ Fitting to (two) experimentally known IAS energies

→ Derive from theory

→ our option: u0 to reproduce BHF (symmetric nuclear
matter) and s0 to reproduce EIAS in 208Pb
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k
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Physics Letters B 445, 259 (1999)
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Re-fit of SAMi: SAMi-ISB

• All these corrections are relatively small but modify

binding energies, neutron and proton distributions, etc.

⇒ a re-fit of the interaction is needed.
• Use SAMi fitting protocol (special care for spin-isospin
resonances) including all corrections and find SAMi-ISB

Table: Saturation properties

SAMi SAMi-ISB

ρ∞ 0.159(1) 0.1613(6) fm−3

e∞ −15.93(9) −16.03(2) MeV
m∗

IS 0.6752(3) 0.730(19)
m∗

IV 0.664(13) 0.667(120)
J 28(1) 30.8(4) MeV
L 44(7) 50(4) MeV
K∞ 245(1) 235(4) MeV
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SAMi-ISB finite nuclei properties
El. N B Bexp rc r

exp
c ∆Rnp

[MeV] [MeV] [fm] [fm] [fm]
Ca 28 417.67 415.99 3.49 3.47 0.214
Zr 50 783.60 783.89 4.26 4.27 0.097
Sn 82 1102.75 1102.85 4.73 – 0.217
Pb 126 1635.78 1636.43 5.50 5.50 0.151

Corrections on EIAS for 208Pb one by one

EIAS [MeV] Correction [keV]
No correctionsa 18.31
Exact Coulomb exchange 18.41 +100
n/p mass difference 18.44 +30
Electromagnetic spin-orbit 18.45 +10
Finite size effects 18.40 -50
Vacuum polarization (Vch) 18.53 +130
Isospin symmetry breaking 18.80 +270

aFrom Skyrme Hamiltonian where the nuclear part is isospin symmetric and Vch is calculated from the ρp

E
exp
IAS = 18.826± 0.01 MeV. Nuclear Data Sheets 108, 1583 (2007).
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EIAS with SAMi-ISB
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Conclusions: EoS around saturation
→ The isovector channel of the nuclear effective interaction is

not well constrained by current experimental

information.

→ Many observables available in current laboratories are
sensitive to the symmetry energy. Problems: accuracy and

model dependent analysis (precision). Systematic

experiments may help on the accuracy.
→ Exotic nuclei more sensitive to the isovector properties

(due to larger neutron excess). Problems: more difficult to

measure, accuracy and model dependent analysis

(precision). Systematic experiments may help accuracy.
→ The most promissing observables to constraint the

symmetry energy are those that can be measured via
processes with little or no influence of the strong force ⇒
precision: ∆rnp, αD, EIAS (if ISB in the medium were
better understood) and the ∆Rch between mirror nuclei

(intimately connected with the IAS) in medium and

heavy nuclei. 24



Conclusions: Isobaric Analog State

• EDFs of common use in nuclear physics show a linear

dependence between EIAS and ∆rnp

• EDFs do not properly describe the experimental EIAS

• Modification of Heff requires a refit of the interaction
including new ISB parameters.

• One can reconcile good reproduction of experimenatal

charge radii, binding energies, EIAS...

• A better knowledge of ISB contributions in the

medium may lead to an accurate determination of neu-

tron skin thickness via EIAS (or the other way around)
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Thank you for your
attention!
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EIAS in Energy Density Functionals

B
S
k1

7
S
Ly

4,
S
Ly

5
S
kM

*
  N

R
A
P
R

S
kI

3

S
k2

55

S
kI

5

                            SkX

SkX (W Coul. Exch)S
A
M

i

S
A
M

i-I
S
B

0.1 0.15 0.2 0.25 0.3
∆R

np
 (fm)

17.5

18

18.5

19
E

IA
S
 (

M
eV

)

r = 0.985
Skyrme
DD-ME
SAMi-J

Exp

Hadronic
probes

PREx

27


