Can we reconcile our understanding of the symmetry energy with the isobaric analog state properties?

Xavier Roca-Maza Università degli Studi di Milano and INFN Information and statistics in nuclear experiment and theory ISNEI-5 6–9 November 2017. King's Manor. York.

Table of contents:

Brief Introduction

- Some comments on EDFs
- The nuclear EoS
- EoS parameters and nuclear observables:

some physical insights

Statistic uncertainties in EDFs:

- Comments on the theory
- Example: Relativistic versus non-Relativistic

Systematic uncertainties in EDFs:

- Example: Isobaric Analog State
- Conclusions

• Work in collaboration with:

G. Colò (U. Milan, Italy)

H. Sagawa (Aizu U. and RIKEN, Japan)

N. Paar (Zagreb U., Croatia)

Theoretical framework for the study of nuclei and nuclear matter:

Nuclear Energy Density Functionals (EDFs) consitute our unique theoretical framework for a microscopic description of the Isobaric Analog State (IAS) energy in medium and heavy nuclei and on the nuclear matter Equation of State (EoS) in a consistent way.

 $\langle \Psi | {\cal H} | \Psi \rangle \approx \langle \Phi | {\cal H}_{eff} | \Phi \rangle = {\sf E}[\rho]$ (?)

• Commonly derived from an effective Hamiltonian solved at the Hartree-Fock level.

Nuclear Energy Density Functionals:

Main types of successful EDFs are derived from Hartree-Fock (mean-field) calculations based on an effective interaciton Relativistic mean-field models, based on Lagrangians where effective mesons carry the interaction:

$$\begin{aligned} \mathcal{L}_{int} &= \bar{\Psi} \Gamma_{\sigma}(\bar{\Psi}, \Psi) \Psi \Phi_{\sigma} &+ \bar{\Psi} \Gamma_{\delta}(\bar{\Psi}, \Psi) \tau \Psi \Phi_{\delta} \\ &- \bar{\Psi} \Gamma_{\omega}(\bar{\Psi}, \Psi) \gamma_{\mu} \Psi A^{(\omega)\mu} &- \bar{\Psi} \Gamma_{\rho}(\bar{\Psi}, \Psi) \gamma_{\mu} \tau \Psi A^{(\rho)\mu} \\ &- e \bar{\Psi} \hat{Q} \gamma_{\mu} \Psi A^{(\gamma)\mu} \end{aligned}$$

Non-relativistic mean-field models, based on Hamiltonians where effective interactions are proposed and tested:

$$V_{Nucl}^{eff} = V_{attractive}^{long-range} + V_{repulsive}^{short-range} + V_{SC}$$

- Fitted parameters contain (important) correlations beyond the mean-field
- ► Nuclear energy functionals are phenomenological → not directly connected to any NN (or NNN) interaction

The Nuclear Equation of State: Infinite System

* SNM can be expanded around ρ_0 and define some useful parameters:

* Sv

$$e(\rho, 0) \approx e(\rho_0, 0) + K\epsilon^2$$
 where $\epsilon \equiv \frac{\rho_0 - \rho}{3\rho_0}$
* Symmetry energy can be also expanded around ρ_0 and define
some useful parameters:

 $S(\rho) \approx J - L\varepsilon + K_{sum}\varepsilon^2$

Examples: EoS parameters from nuclear observables

EDFs provide a good description of nuclear masses (~ 0.1%), charge radii (~ 0.1 - 1%) and collective oscillation frequencies around the g.s. (GR excitation energies)

Some physical insights may be obtained from simple considerations (models) while studyting microscopically a given observable:

► B(A, Z) determine very precisely $e(\rho_0, 0) \equiv e_0$ (-16 MeV) $\frac{\delta e_0}{e_0} \sim 1\% \Rightarrow \delta B(^{208}Pb) \sim 30 \text{ MeV} (2\%)$

A small change on $e(\rho_0,0)$ will predict unrealistic B in a heavy nucleus

• The interior density (ρ_0) in most of existing nuclei is 0.16 fm⁻³

 $\frac{\delta\rho_0}{\rho_0} \sim 5\% \Rightarrow \delta r(^{208}\text{Pb}) \sim \delta r_0 A^{1/3} \sim 0.1 \text{ fm (2\%)}$

A small change will predict not very good radii and this will/may also affect B

Examples: EoS parameters from nuclear observables

Isovector properties (e.g. $S(\rho)$) are thought to be well determined by the neutron skin thickness $(\Delta r_{np} \equiv \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2})$ of a heavy nucleus such as ²⁰⁸Pb): Macroscopic model: $\Delta r_{np} \sim \frac{1}{12} \frac{(N-Z)}{A} \frac{R}{J} L \quad (L \propto p_0^{neut})$

Micorscopic models (EDFs) confirm such a relation However the experimental precision and accuracy needed in the measurment of this property is very challenging nowadays.

Physical Review Letters **106**, 252501 (2011) [Exp. from strongly interacting probes: $\sim 0.15 - 0.22$ fm (Physical Review C **86** 015803 (2012))].

Isovector properties in nuclei

 In the past, neutron properties in stable medium and heavy nuclei have been mainly measured by using strongly interacting probes and (N – Z)/A explored is small.

Limited knowledge of isovector properties (Not precise: model dependent analysis due to incomplete understanding of the strong interaction in the low-energy regime important for nuclei.)

- At present,
 - the use of **RIBs** has opened the possibility of measuring properties of **nuclei with large** N – Z
 - parity violating elastic electron scattering, a model independent technique, has allowed to estimate the weak (neutron) form factor at low q of ²⁰⁸Pb

Promising perspectives for the near future 1) We need to reliably assess the quality of our extrapolations 2) Find observables that are not sensitive to the strong force

Covariance analysis: χ^2 test

- Observables 0 used to calibrate the parameters \mathbf{p} $\chi^2(\mathbf{p}) = \sum_{\iota=1}^{m} \left(\frac{\mathcal{O}_{\iota}^{\text{theo.}} - \mathcal{O}_{\iota}^{\text{ref.}}}{\Delta \mathcal{O}_{\iota}^{\text{ref.}}}\right)^2$
- Assuming that the χ^2 can be approximated by an hyper-parabola around the minimum \mathbf{p}_{0} ,

$$\chi^{2}(\mathbf{p}) - \chi^{2}(\mathbf{p}_{0}) \approx \frac{1}{2} \sum_{\iota, \iota}^{\prime\prime} (p_{\iota} - p_{0\iota}) \partial_{p_{\iota}} \partial_{p_{\iota}} \chi^{2}(p_{\iota} - p_{0\iota})$$

where $\mathcal{M} \equiv \frac{1}{2} \partial_{p_1} \partial_{p_2} \chi^2$ (curvature m.) and $\mathcal{E} \equiv \mathcal{M}^{-1}$ (error m.).

errors between predicted <u>observables A</u>

$$\Delta \mathcal{A} = \sqrt{\sum_{\iota}^{n} \partial_{p_{\iota}} A \mathcal{E}_{\iota \iota} \partial_{p_{\iota}} A}$$

correlations between predicted observables,

where,
$$C_{AB} \equiv \frac{C_{AB}}{\sqrt{C_{AA}C_{BB}}}$$

where, $C_{AB} = \overline{(A(\mathbf{p}) - \overline{A})(B(\mathbf{p}) - \overline{B})} \approx \sum_{ij}^{n} \partial_{p_i} A \mathcal{E}_{ij} \partial_{p_j} B$

Example: 2 different fitting protocols and models: SLy5-min: use constant error for a given observable

- Binding energies of ^{40,48}Ca, ⁵⁶Ni, ^{130,132}Sn and ²⁰⁸Pb with a fixed adopted error of 2 MeV
- ► the charge radius of ^{40,48}Ca, ⁵⁶Ni and ²⁰⁸Pb with a fixed adopted error of 0.02 fm
- the neutron matter Equation of State calculated by Wiringa *et al.* (1988) for densities between 0.07 and 0.40 fm⁻³ with an adopted error of 10%
- ► the saturation energy ($e(\rho_0) = -16.0 \pm 0.2$ MeV) and density ($\rho_0 = 0.160 \pm 0.005$ fm⁻³) of symmetric nuclear matter.

DD-ME-min1: use relative error for all observables

binding energies, charge radii, diffraction radii and surface thicknesses of 17 even-even spherical nuclei, ¹⁶O, ^{40,48}Ca, ^{56,58}Ni, ⁸⁸Sr, ⁹⁰Zr, ^{100,112,120,124,132}Sn, ¹³⁶Xe, ¹⁴⁴Sm and ^{202,208,214}Pb. The assumed errors of these observables are 0.2%, 0.5%, 0.5%, and 1.5%, respectively.

Covariance analysis: SLy5-min and DD-ME-min1

- \bullet L and the neutron skin thickness in ^{208}Pb are shown to be correlated.
- L and the energy of the Isobaric Analog State are also correlated (not shown here)

Covariance analysis: SLy5-min and DD-ME-min1

	CT E ·			DDM			
	SLy5-min			DDME-m	DDME-min1		
A	Ao		$\sigma(A_0)$	AO		$\sigma(A_0)$	units
SNM							
P0	0.162	±	0.002	0.150	±	0.001	fm ⁻³
$e(\rho_0)$	-16.02	±	0.06	-16.18	±	0.03	MeV
m*/m	0.698	±	0.070	0.573	±	0.008	
J	32.60	±	0.71	33.0	±	1.7	MeV
κ _o	230.5	±	9.0	261	±	23	MeV
L	47.5	±	4.5	55	±	16	MeV
²⁰⁸ Pb							
Δrnp	0.1655	±	0.0069	0.20	±	0.03	fm

 \bullet Statistical error on Δr_{np} (and IAS energy) much smaller than systematic error

• In addition, statistical uncertainties depend on the fitting protocol, that is on the data (or pseudo-data) and associated errors used for the fits

The isobaric analog state energy: ΔE_d

• **Definition:** $(N, Z + 1) \rightarrow (N + 1, Z)$: T_0 g.s. isospin of (N + 1, Z), its IAS in (N, Z + 1) will be the lowest state where $T = T_0$.

- Analog state can be defined: $|A\rangle = \frac{T_{-}|0\rangle}{\langle 0|T_{+}T_{-}|0\rangle}$
- Displacement energy

$$\mathsf{E}_{\mathrm{IAS}} \approx \Delta \mathsf{E}_{\mathrm{d}} \equiv \mathsf{E}_{\mathrm{A}} - \mathsf{E}_{\mathrm{0}} = \langle \mathsf{A} | \mathfrak{H} | \mathsf{A} \rangle - \langle \mathsf{0} | \mathfrak{H} | \mathsf{0} \rangle = \frac{\langle \mathsf{0} | [\mathsf{T}_{+}[\mathfrak{H},\mathsf{T}_{-}] | \mathsf{0} \rangle}{\langle \mathsf{0} | \mathsf{T}_{+}\mathsf{T}_{-} | \mathsf{0} \rangle}$$

 E_{IAS}^{exp} easy to measure and depends only on isospin symmetry symmetry breaking terms: Coulomb and to less extent (few %) strong interaction

The displacement energy: contributions

 $[\mathcal{H}, T_{-}] \neq 0$? essentially **Coulomb potential** but not only

Table: Estimate of the different effects on ΔE_d in ²⁰⁸Pb. Physical Review Letters **23**, 484 (1969).

	ΔE_d Correction
Coumb direct	$\sim 20 \ MeV$
Coulomb exchange	\sim -300 keV
n-p mass difference	\sim tens keV
Electromagnetic spin-orbit	\sim - tens keV
Finite size effects	\sim - 100 keV
Short range correlations	$\sim 100 \text{ keV}$
Isospin impurity	\sim -100 keV
Isospin symmetry breaking	\sim - 250 keV
	$\sim 19 \; MeV$

 $E_{IAS}^{exp} = 18.826 \pm 0.01$ MeV. Nuclear Data Sheets 108, 1583 (2007).

Coulomb direct displacement energy

$$\Delta E_{d} \approx \Delta E_{d}^{C,direct} = \frac{1}{N-Z} \int \left[\rho_{n}(\vec{r}) - \rho_{p}(\vec{r}) \right] U_{C}^{direct}(\vec{r}) d\vec{r}$$

where
$$U_C^{\text{direct}}(\vec{r}) = \int \frac{e^2}{|\vec{r}_1 - \vec{r}|} \rho_{\text{ch}}(\vec{r}_1) d\vec{r}_1$$

Assuming a uniform neutron and proton distributions of radius R_n and R_p respectively, and $\rho_{ch}\approx\rho_p$ one can find

$$\Delta E_{d} \approx \Delta E_{d}^{C,direct} \approx \frac{6}{5} \frac{Ze^{2}}{R_{p}} \left(1 - \frac{1}{2} \frac{N}{N-Z} \frac{R_{n} - R_{p}}{R_{p}}\right)$$

One may expect: the larger the Δr_{np} the smallest E_{IAS}

EDFs derived from Hartree-(Fock) + Random Phase approximations using relativistic (and non-relativistic) interactions where the nuclear part is isospin symmetric and U_{ch} is calculated from the ρ_p

Corrections: For the first time within self-consistent HF+RPA

Within the **HF+RPA** one can **estimate** the E_{IAS} accounting (in an effective way) for **short-range correlations**, **isospin impurities and effects of the continuum** (if a large sp base is adopted).

• Coulomb exchange exact (usually Slater approx.):

$$U_C^{x,exact}\phi_{\mathfrak{i}}(\vec{r})=-\frac{e^2}{2}\int d^3r'\;\frac{\phi_{\mathfrak{j}}^*(\vec{r}')\phi_{\mathfrak{j}}(\vec{r})}{|\vec{r}-\vec{r}'|}\phi_{\mathfrak{i}}(\vec{r}')$$

• The **electromagnetic spin-orbit** correction to the nucleon single-particle energy (non-relativistic),

$$\varepsilon_{i}^{emso} = \frac{\hbar^{2}c^{2}}{2m_{i}^{2}c^{4}} \langle \vec{l}_{i} \cdot \vec{s}_{i} \rangle x_{i} \int \frac{1}{r} \frac{dU_{C}}{dr} |R_{i}(r)|^{2}$$

where $x_i:$ g_p-1 for Z and g_n for N; $g_n=-3.82608545(90)$ and $g_p=5.585694702(17),$ $R_i \rightarrow R_{nl}$ radial wf.

Corrections:

• Finite size effects (assuming spherical symmetry):

$$\begin{split} \rho_{ch}(q) &= \left(1 - \frac{q^2}{8m^2}\right) \left[G_{E,p}(q^2)\rho_p(q) + G_{E,n}(q^2)\rho_n(q)\right] \\ &- \frac{\pi q^2}{2m^2} \sum_{l,t} \left[2G_{M,t}(q^2) - G_{E,t}(q^2)\right] \langle \vec{l} \cdot \vec{s} \rangle \int_0^\infty dx \frac{j_1(qx)}{qx} |R_{nl}(x)x^2|^2 \end{split}$$

• The lowest order correction in the fine-structure constant to the Coulomb potential $\frac{eZ}{r}$ consists on the selfenergy and the vacuum polarization corrections:

$$V_{\rm vp}(\vec{r}) = -\frac{2}{3} \frac{\alpha e^2}{\pi} \int d\vec{r}' \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} \mathcal{K}_1\left(\frac{2}{\lambda_e}|\vec{r} - \vec{r}'|\right)$$

where *e* is the fundamental electric charge, α the fine-structure constrant, \hbar_e the reduced Compton electron wavelength and

$$\mathfrak{K}_{1}(\mathbf{x}) \equiv \int_{1}^{\infty} dt e^{-\mathbf{x}t} \left(\frac{1}{t^{2}} + \frac{1}{2t^{4}}\right) \sqrt{t^{2} - 1}$$

Corrections:

• Isospin symmetry breaking (Skyrme-like): two parts

 $\begin{array}{ll} \mbox{charge symmetry breaking} & + \\ V_{CSB} = V_{n\,n} - V_{p\,p} \end{array}$

$$\begin{split} & V_{CSB}(\vec{r}_1,\vec{r}_2) \equiv \frac{1}{4} \left[\tau_z(1) + \tau_z(2) \right] \left\{ s_0 \left(1 + y_0 \, P_\sigma \right) \\ & + \frac{1}{2} s_1 \left(1 + y_1 \, P_\sigma \right) \left[P'^2 \, \delta(\vec{r}_1 - \vec{r}_2) + \delta(\vec{r}_1 - \vec{r}_2) P^2 \right] \\ & + s_2 \left(1 + y_2 \, P_\sigma \right) \vec{P}' \cdot \delta(\vec{r}_1 - \vec{r}_2) \vec{P} \right\} \\ & \text{where } \vec{P} \equiv \frac{1}{2\iota} (\vec{\nabla}_1 - \vec{\nabla}_2) \text{ acts on the right and } P' \text{ is its complex conjugate acting on the left and } P_{\tau/\sigma} \text{ are the usual projector operators in isospin and spin spaces.} \end{split}$$

charge independence breaking* $V_{CIB} = \frac{1}{2} (V_{nn} + V_{pp}) - V_{pn}$ $V_{CIB}(\vec{r}_1, \vec{r}_2) \equiv \frac{1}{2} \tau_z(1) \tau_z(2) \Big\{ u_0(1 + z_0 P_{\sigma}) + \frac{1}{2} u_1(1 + z_1 P_{\sigma}) \left[P'^2 \delta(\vec{r}_1 - \vec{r}_2) + \delta(\vec{r}_1 - \vec{r}_2) P^2 \right] + u_2(1 + z_2 P_{\sigma}) \vec{P}' \cdot \delta(\vec{r}_1 - \vec{r}_2) \vec{P} \Big\}$ * general operator form $\tau_z(1) \tau_z(2) - \frac{1}{3} \vec{\tau}(1) \cdot \vec{\tau}(2)$. Our prescription $\tau_z(1) \tau_z(2)$ not change structure of HF+RPA.

• Opposite to the other corrections, **ISB contributions depends** on new parameters that need to be fitted!

Isospin symmetry breaking in the medium:

- keeping things simple: CSB and CIB interaction just delta function depending on s₀ and u₀. Different possibilities:
- \rightarrow Fitting to (two) experimentally known IAS energies
- \rightarrow Derive from theory

 \rightarrow our option: u_0 to reproduce BHF (symmetric nuclear matter) and s_0 to reproduce E_{IAS} in ^{208}Pb

Physics Letters B 445, 259 (1999)

Re-fit of SAMi: SAMi-ISB

• All these corrections are relatively small but modify binding energies, neutron and proton distributions, etc. ⇒ a re-fit of the interaction is needed.

• Use **SAMi fitting protocol** (special care for spin-isospin resonances) including all corrections and **find SAMi-ISB**

	SAMi	SAMi-ISB	
$ ho_\infty$	0.159(1)	0.1613(6)	fm ⁻³
e_{∞}	-15.93(9)	-16.03(2)	MeV
$\mathfrak{m}^*_{\mathrm{IS}}$	0.6752(3)	0.730(19)	
$\mathfrak{m}_{\mathrm{IV}}^*$	0.664(13)	0.667(120)	
J	28(1)	30.8(4)	MeV
L	44(7)	50(4)	MeV
K_∞	245(1)	235(4)	MeV

Table: Saturation properties

SAMi-ISB finite nuclei properties

El.	Ν	В	B ^{exp}	r _c	rcexp	ΔR_{np}
		[MeV]	[MeV]	[fm]	[fm]	[fm]
Ca	28	417.67	415.99	3.49	3.47	0.214
Zr	50	783.60	783.89	4.26	4.27	0.097
Sn	82	1102.75	1102.85	4.73	_	0.217
Pb	126	1635.78	1636.43	5.50	5.50	0.151

Corrections on E_{IAS} for ²⁰⁸Pb one by one

	E _{IAS} [MeV]	Correction [keV]
No corrections ^a	18.31	
Exact Coulomb exchange	18.41	+100
n/p mass difference	18.44	+30
Electromagnetic spin-orbit	18.45	+10
Finite size effects	18.40	-50
Vacuum polarization (V _{ch})	18.53	+130
Isospin symmetry breaking	18.80	+270

 \overline{a} From Skyrme Hamiltonian where the nuclear part is isospin symmetric and V_{ch} is calculated from the ρ_p

 $E_{IAS}^{exp}=$ 18.826 \pm 0.01 MeV. Nuclear Data Sheets 108, 1583 (2007).

E_{IAS} with SAMi-ISB

Conclusions: EoS around saturation

- → The isovector channel of the nuclear effective interaction is not well constrained by current experimental information.
- → Many observables available in current laboratories are sensitive to the symmetry energy. Problems: accuracy and model dependent analysis (precision). Systematic experiments may help on the accuracy.
- → Exotic nuclei more sensitive to the isovector properties (due to larger neutron excess). Problems: more difficult to measure, accuracy and model dependent analysis (precision). Systematic experiments may help accuracy.
- → The most promissing observables to constraint the symmetry energy are those that can be measured via processes with little or no influence of the strong force ⇒ **precision**: Δr_{np} , α_D , E_{IAS} (if ISB in the medium were better understood) and the ΔR_{ch} between mirror nuclei (intimately connected with the IAS) in medium and heavy nuclei.

Conclusions: Isobaric Analog State

- EDFs of common use in nuclear physics show a linear dependence between E_{IAS} and Δr_{np}
- EDFs do not properly describe the experimental E_{IAS}
- Modification of \mathcal{H}_{eff} requires a refit of the interaction including new ISB parameters.
- One can reconcile good reproduction of experimenatal charge radii, binding energies, E_{IAS}...

• A better knowledge of ISB contributions in the medium may lead to an accurate determination of neutron skin thickness via E_{IAS} (or the other way around)

Thank you for your attention!

E_{IAS} in Energy Density Functionals

