Statistical analysis in nuclear DFT: central depression as example

P.-G. Reinhard¹

¹Institut für Theoretische Physik II, Universität Erlangen-Nürnberg

ISNET17, York (UK), 8. November 2017

Outline

- Framework: nuclear DFT, calibration& statistical analysis
 - Typical structure of nuclear density functionals
 - Optimization of model parameters (χ^2 fits), statistical analysis
- Solution Central density $\rho(0)$ and central depression w of nuclear charge density
 - Charge formfactor, charge density and all that
 - Nuclear DFT and central depression: trends, correlations, predictions
 - Averages and variances: trends with size and proton number
 - Correlations (with Coulomb energy, model parameters, groups, ...)
 - Inter-correlations: nuclei in different regions
 - Toward estimating a systematic error
 - Confrontation with data, variation of the model,

Conclusions

- Bastian Schütrumpf (GSI) & Witek Nazarewicz (MSU) ↔ central depression [PRC 96 (2017) 024306]
- Jochen Erler and Peter Klüpfel \leftrightarrow Skyrme parametrizations [PRC **79** (2009) 034310] Witek Nazarewicz (MSU) \leftrightarrow Fayans functionals [PRC **95** (2017) 064328] Jörg Friedrich \leftrightarrow charge formfactors etc [NPA **373** (1982) 192, NPA **459** (1986) 10]

1) Motivation: nuclear bubbles - bubble nuclei

Super-heavy elements (SHE) \leftrightarrow bubble nuclei ?

example:local density distribution $\rho(r = 0)$ for SHE just above known region

other examples in some light nuclei (³⁴Si, ⁴⁶Ar)

bubble = dip at $\rho(0)$, central depression \Rightarrow develop measure & test with stat. analysis

2) Framework: nuclear DFT, calibration & statistical analysis

A nuclear density functional – non-relativistic Skyrme-Hartree-Fock

energy:
$$E = E_{kin} + \int d^3 r \mathcal{E}_{pot}(\rho_p, \rho_n, \tau_p, \tau_n, J_{ls,p}, J_{ls,n}, \chi_{pair}, ...time odd ...) + E_{CoM}$$

pairing density
pairing density
kinetic-energy density
density

$$\mathcal{E}_{\text{pot}} = \sum_{T=0}^{1} \left[C_{T}^{(0)}(\rho_{0}) \ \rho_{T}^{2} + C_{T}^{\Delta} \ \rho_{T} \Delta \rho_{T} + C_{T}^{(\text{kin})} \ \tau_{T} \rho_{T} + C_{T}^{(\text{ls})} \ \nabla J_{T} \rho_{T} \right] + \sum_{t \in \{\rho, n\}} C_{t}^{(\text{pair})}(\rho_{0}) \chi_{t}^{2}$$

density dependence: $C_{T}^{(0)}(\rho_{0}) = C_{T}^{(0)}(0) + C_{T}^{(\rho)}\rho_{0}^{\alpha}$, $C_{t}^{(\text{pair})}(\rho_{0}) = V_{t}^{(\text{pair})}\left(1 - \frac{\rho_{0}}{\rho_{\text{pair}}}\right)$ isospin recoupling: $\rho_{0} = \rho_{n} + \rho_{p}$, $\rho_{1} = \rho_{n} - \rho_{p}$

 $\begin{array}{l} \longleftrightarrow \\ \label{eq:constraint} \longleftrightarrow \\ \mbox{universal} = {\rm same \ parameters \ for \ all \ systems} \\ \mbox{ } \longleftrightarrow \\ \mbox{insufficient "ab-initio" \ data } \Rightarrow \ {\rm model \ parameters \ from \ } \chi^2 \mbox{-fit to \ empirical \ data} \\ \mbox{in the following \ using \ parametrization \ ${\rm SV-min}$ from \ {\rm PRC \ 79}$ (2009) \ 034310. \\ \mbox{ fit \ data: \ E, $r_{\rm rms}$, $R_{\rm diffr.}$, $\sigma_{\rm surf}$, ϵ_{ls}, $\Delta^{(3)}_{\rm pair}$ in \ {\rm semi-magic \ nuclei}$ (255 \ data \ points)$ \end{array}$

Physical model parameters

For the smooth part:	liquid-drop	model parameters	(LDM)
----------------------	-------------	------------------	-------

$E/A _{eq}$	volume energy	isoscalar	
$ ho_{ m eq}$	equilibrium density	isoscalar	
Κ	incompressibility	isoscalar	bulk
J	symmetry energy	isovector	
L	slope of symmetry energy	isovector	
$a_{\rm surf}$	surface energy	isoscalar	surface
a _{surf,sym}	surface symmetry energy	isovector	

For shell fluctuations: kinetic and pairing parameters

<i>m</i> */ <i>m</i>	effective mass	isoscalar	
κ_{TRK}	TRK sum rule enhancement	isovector	influence
$b_{ls,T=0}$	spin-orbit strength	isoscalar	on spectra
$b_{ls,T=1}$	spin-orbit strength	isovector	
$V_{\text{pair},p}$	proton pairing strength		sensitive
$V_{\text{pair},n}$	neutron pairing strength		to spectra
$ ho_{ m pair}$	pairing density dependence		

Optimization of model parameters and statistical analysis

$$\begin{array}{ll} \underline{\text{global quality measure:}} & \chi^2(\mathbf{p}) = \sum_{t=1}^{N_{\text{data}}} \frac{\left(\mathcal{O}_t(\mathbf{p}) - \mathcal{O}_t^{\text{exp}}\right)^2}{\Delta \mathcal{O}_t^2} &, \quad \mathcal{O}_t = \text{fit observable,} \\ \mathbf{p} = (p_1, ..., p_{N_p}) = \text{model parameters.} \quad \Delta \mathcal{O}_t = \text{adopted error} \\ \underline{\text{optimal parameters } \mathbf{p}_0} \colon \chi^2(\mathbf{p}_0) = \text{minimal} \\ \underline{\text{statistical interpretation:}} & W(\mathbf{p}) \propto \exp\left(-\chi^2(\mathbf{p})\right) \equiv \text{probability for parameter set } \mathbf{p} \\ \implies \text{average} \equiv \overline{A} = \int d\mathbf{p} \ WA(\mathbf{p}) \ \text{, variance} \equiv \overline{\Delta^2 A} = \int d\mathbf{p} \ W(A - \overline{A})^2 \ \text{.} \\ \underline{\text{Taylor expansions:}} & \text{Covariance matrix} \equiv \mathcal{C}_{p_1 p_1}^{-1} = \partial_{p_1} \partial_{p_1} \chi \Big|_{\mathbf{p}_0} \\ \implies \text{average } \overline{A} = A(\mathbf{p}_0), \quad \text{variance } \overline{\Delta^2 A} = \partial_{\mathbf{p}} A \cdot \hat{\mathcal{C}} \cdot \partial_{\mathbf{p}} A \\ \text{covariance } \overline{\Delta A \Delta B} = \partial_{\mathbf{p}} A \cdot \hat{\mathcal{C}} \cdot \partial_{\mathbf{p}} B \\ \text{coefficient of determination (CoD):} \quad r_{AB}^2 = \frac{|\overline{\Delta A \Delta B}|^2}{\overline{\Delta^2 A \overline{\Delta^2 B}}} \\ \text{multiple correlation coeff. (MCC):} \ R_{AB}^2 = \sum_{ij} r_{BA_i} (r_{AA})_{ij}^{-1} r_{A_jB} \\ \leftrightarrow \text{CoD } \ R_{AB}^2 \text{ of a group of obs. } \mathbf{A} = (A_1, ..., A_g) \text{ with obs. } B \end{array}$$

Stages of model development

	model	observable	
physics explorations			
modeling	range of applicability (RoA)	observable in RoA	
data	fit observables in RoA	direct or model dep. ?	
statistical analysis			
averages	unresolved trends in fit obs.	predictions, extrapolations	
		comparison with data ?	
variances	strong vs. soft model params.	extrapolation errors	
CoD, MCC	sensitivity analysis	(in-)dependent obs./params.	
	superflous parameters	redundant or useful data ?	
	\Rightarrow directions for extensions		
systematic errors	no systematic way \rightarrow trial and error, variations of model		
	\Longrightarrow back to physics		

3) Central density $\rho(0)$ and central depression w

Density profiles for various nuclear sizes

develop closely around average density \leftrightarrow nuclear saturation central density $\rho_{p/n}(0)$ fluctuates \pm about average \leftrightarrow shell effects $\implies \rho_{p/n}(0)$ contains info on both: bulk properties (LDM) & shell effects

Safe and unsafe regions of formfactor $F(\mathbf{q}) = \int d^3 r \, e^{i\mathbf{q}\cdot\mathbf{r}} \rho(\mathbf{r})$

systematic deviation for F(q) above $q > 2.5/\text{fm} \leftrightarrow$ suppressed by short-range correl. $r \approx 0$ sensitive to large $q \stackrel{?}{\Rightarrow}$ central density $\rho(0)$ not a perfect mean-field observable \implies try alternative measure for central depression \leftrightarrow from F(q) in q < 2.5/fm

A safe (?) measure: central depression parameter w

Formfactor zeroes and critical region

1.&2. zero, 1. maximum \leftrightarrow diffraction radius R_{diffr} , surface thickn. σ_{surf} , central depr. wsmall nuclei closer to critical $q \approx 2.5/\text{fm} \implies$ definition of <u>w less robust</u>

4) Nuclear DFT and central depression: trends, correlations, predictions

testing set: 3 isotonic chains, fixed neutron number N & varied proton number Z N = 82,126 examples from normal nuclei and N = 184 chain of SHE

Trends & variances for central depression w_t & central density $\rho_t(0)$

central depression systematically larger for protons \leftrightarrow Coulomb pressure (?) kink at magic proton number $Z = 82 \leftrightarrow$ shell effect (in both observables!) no unique trend with proton number; extrapolation errors small

Correlations with Coulomb energy

impact of Coulomb energy increases dramatically for SHE surprisingly little correlation with Coulomb energy for "normal" nuclei proton and neutron observables show similar correlations

Coefficients of determination (CoD) of $\rho_t(0)$ and w_t with model params.

Trends of multiple correlation coefficients (MCC)

 $\begin{array}{ll} \rho_{p}(0): & \text{``LDM''}(=E/A, \rho_{eq}, K, J, L, \text{surf}) \text{ dominates clearly over ``shell''(=kinetic,ls,pair)} \\ & \longleftrightarrow \rho(0) \text{ contains shell effects - but you have little influence on them} \\ w_{\rho}: & \text{``shell''-group is as important as ``LDM''} & (surprise!) \end{array}$

Correlations between nuclei in different regions

Can one improve extrapolations by $\rho(0)\&w$ in existing nuclei?

matrix of CoD central density ρ_{p} and central depression w_{\text{p}}

5) Toward estimating a systematic error

test set for comparison with data: stable, spherical nuclei where F(q)-data exist

Comparison with experimental data from $\rho_{charge}(r)$ for stable nuclei

 $[\]rho_{\rm c}(0)$: agrees with data

SHE: mean-field predictions increasingly reliable with increasing system size A

Variation of model – add Fayans functionals

Fayans functional:very similar to Skyrem-Hartree-Fock
slightly different density dependence (rational fct. instead of ρ_0^{α})major news:additional $\nabla \rho_0$ terms in surface parameter $C_T^{\Delta \rho}$ and pairing $C_t^{(pair)}$
 \Longrightarrow more flexible modeling of surface

Variation of model - add Fayans functionals

 $\begin{array}{ll} \rho_{p}(0): & \text{error bars even smaller for Fy functional - in spite of more surface terms} \\ & \text{predictions significantly different (outside error bars) - no clear trend} \\ w_{\rho}: & \text{differences insignificant (inside error bars) - trends different from } \rho_{\rho}(0) \\ & \text{difference Fy} \leftrightarrow \text{SV-min smaller than for other (\& older) models (RMF,folded Yukawa)} \end{array}$

4) Conclusions

central density $\rho(0)$ & central depression *w*:

from formfactor F(q), unclear impact of high q (short-range correl., shell fluct.) \Rightarrow risky observable \leftrightarrow testing ground for statistical analysis

impact of model parameters and Coulomb pressure:

 $E_{\rm coul}$ only relevant in SHE influences spread over many model parameters – no dominant influencer "LDM group": decisive for $\rho(0)$, still important for *w* "shell group": considerable impact on *w*, only weak impact on $\rho(0)$

correlations between different A, model depedence, data:

 $\rho(0)\&w$ in SHE independent from normal nuclei variation of model (Fayans funct.) yields only small differences theory compatible with data on $\rho_c(0)$, systematic deviations for w_c in small nuclei

 \implies : at variance with expectation: $\rho(0)$ is a better mean-field observable than w both observables can be safely extrapolated to SHE

Trends of multiple correlation coefficients (MCC)

 $\begin{array}{ll} \rho_{p}(0): & \text{``LDM"}(=E/A, \rho_{eq}, K, J, L, \text{surf}) \text{ dominates clearly over ``shell"}(=kinetic, \text{Is, pair}) \\ & \text{already ``isovector LDM"}(=J, L) \text{ determines a large fraction} \\ w_{p}: & \text{``shell"-group is as important as ``LDM", ``J, L" has much less impact} \end{array}$

Matrix of CoD for ⁴⁸Ca and ³⁰²Og

Comparison with experimental data from $\rho_{\text{charge}}(r)$ for stable nuclei

- *w*_c: mean-field theory differs from data, situation improves for heavy nuclei \leftrightarrow in spite of LDM motivation some impact from high *q* (short-range correl.?)
- SHE: mean-field predictions increasingly reliable with increasing system size A