⁷Be(p,γ)⁸B: how EFT and Bayesian analysis can improve a reaction calculation

Daniel Phillips

Work done in collaboration with: K. Nollett (SDSU), X. Zhang (UW)

Phys. Rev. C 89, 051602 (2014), Phys. Lett. B751, 535 (2015), EPJ Web Conf. 113, 06001 (2016), arXiv:1708.04017

Research supported by the US Department of Energy

Part of pp chain (ppIII)

- Part of pp chain (ppIII)
- Key for predicting flux of solar neutrinos, especially highenergy (⁸B) neutrinos

- Part of pp chain (ppIII)
- Key for predicting flux of solar neutrinos, especially highenergy (⁸B) neutrinos
- Accurate knowledge of ⁷Be(p, y) needed for inferences from solar-neutrino flux regarding solar composition → solar-system formation history

Thermonuclear $\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp\left(-\frac{E}{k_B T}\right) E \sigma(E)$ reaction rate

Thermonuclear
$$\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp\left(-\frac{E}{k_B T}\right) E \sigma(E)$$

reaction rate

Thermonuclear
$$\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp\left(-\frac{E}{k_B T}\right) E \sigma(E)$$

reaction rate

Thermonuclear
$$\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp\left(-\frac{E}{k_B T}\right) E \sigma(E)$$

reaction rate

Thermonuclear
reaction rate
$$\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp\left(-\frac{E}{k_B T}\right) E \sigma(E)$$

 $\sigma(E) = \frac{S(E)}{E} \exp\left(-\pi Z_1 Z_2 \alpha_{\rm em} \sqrt{\frac{m_R}{2E}}\right)$

Thermonuclear
reaction rate
$$\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp\left(-\frac{E}{k_B T}\right) E \sigma(E)$$

 $\sigma(E) = \frac{S(E)}{E} \exp\left(-\pi Z_1 Z_2 \alpha_{\rm em} \sqrt{\frac{m_R}{2E}}\right)$

Thermonuclear
reaction rate
$$\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp\left(-\frac{E}{k_B T}\right) E \sigma(E)$$

 $\sigma(E) = \frac{S(E)}{E} \exp\left(-\pi Z_1 Z_2 \alpha_{\rm em} \sqrt{\frac{m_R}{2E}}\right)$

- El capture: ⁷Be + $p \rightarrow {}^8B + \gamma$
- Energies of relevance 20 keV

Outline

- ⁷Be + $p \rightarrow {}^{8}B$ + γ is an important extrapolation problem
- What parameters govern the extrapolation? What is the standard extrapolation method?
- A more reliable extrapolant from Halo Effective Field Theory
- NLO Halo EFT + Bayesian analysis → a better extrapolation
- Summary and future work

$$\mathcal{M}(E) \propto \int dr A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$

Dominated by ⁷Be-p separations ~10s of fm

$$\mathcal{M}(E) \propto \int dr A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$
ANC
Dominated by ⁷Be-p separations ~10s of fm

Dominated by ⁷Be-p separations ~10s of fm

$$\mathcal{M}(E) \propto \int dr A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$

$$\mathbf{ANC} \qquad \mathbf{Dominated by 7Be-p separations ~ 10s of fm}$$

$$\mathbf{Numbers that matter: k_C = Q_c Q_n \alpha_{\mathsf{EM}} M_{\mathsf{R}} = 24 \text{ MeV; } p = \sqrt{2} m_{\mathsf{R}} \text{ E};}$$

$$\gamma_1 = \sqrt{2} m_{\mathsf{R}} \text{ B}; a: parameterizes strength of p-7Be strong scattering}$$

$$\mathcal{M}(E) \propto \int dr A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$

$$\mathbf{ANC} \qquad \text{Dominated by 7Be-p separations ~ 10s of fm}$$

$$\mathbf{Numbers that matter: k_C = Q_c Q_n \alpha_{\text{EM}} M_R = 24 \text{ MeV; } p = \sqrt{2} m_R \text{ E};}$$

$$\gamma_1 = \sqrt{2} m_R \text{ B}; a: \text{ parameterizes strength of p-7Be strong scattering}}$$

$$\mathcal{M}(E) \propto \int dr A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$

$$\mathbf{ANC} \qquad \mathbf{Dominated by 7Be-p separations ~ 10s of fm}$$

$$\mathbf{Numbers that matter: k_C = Q_c Q_n \alpha_{\text{EM}} M_R = 24 \text{ MeV; } p = \sqrt{2} m_R \text{ E};}$$

$$\gamma_1 = \sqrt{2} m_R \text{ B; a: parameterizes strength of p-7Be strong scattering}$$

 Extrapolation is not a polynomial: non-analyticities in p/k_C, p/γ₁, and p a

$$\mathcal{M}(E) \propto \int dr (A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$
ANC Dominated by 7Be-p separations ~ 10s of fm
Numbers that matter: kc=QcQn \alpha_{EM}M_R=24 MeV; p=\sqrt{2} m_R E;
y_1=\sqrt{2} m_R B; a: parameterizes strength of p-7Be strong scattering
Extrapolation is not a
polynomial: non-analyticities
in p/kc, p/y_1, and p a
Bound state (ANC & y_1)
+ Coulomb
$$\int dr (A_1 - \gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$

$$\mathcal{M}(E) \propto \int dr (A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$
ANC Dominated by 7Be-p separations ~ 10s of fm
Numbers that matter: kc=QcQn & EMMR=24 MeV; p= $\sqrt{2}$ mR E;
 $\gamma_1 = \sqrt{2}$ mR B; a: parameterizes strength of p-7Be strong scattering
Extrapolation is not a polynomial: non-analyticities in p/kc, p/y_1, and p a
Bound state (ANC & y_1)
+ Coulomb

$$\mathcal{M}(E) \propto \int dr A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) r u_E(r); \quad \gamma_1 = 1/(13 \text{ fm})$$

ANC Dominated by 7Be-p separations ~10s of fm
Numbers that matter: kc=QcQn & EMMR=24 MeV; p= $\sqrt{2}$ mR E;
 $\gamma_1 = \sqrt{2}$ mR B; a: parameterizes strength of p-7Be strong scattering
Extrapolation is not a polynomial: non-analyticities in p/kc, p/ γ_1 , and p a
Sub-leading polynomial behavior in E/Ecore
Bound state (ANC & γ_1)
+ Coulomb

Status as of 2012

- Below narrow I⁺ resonance proceeds via s- and d-wave direct EI capture
- Energy dependence due to interplay of Coulomb and strong forces
- "Solar fusion II": community evaluation of cross sections relevant for pp and CNO cycles

Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

SF II value: S(0)=20.8±0.7±1.4 eV b

SF I: S(0)=19+4-2 eV b

Used energy dependence from a "best" calculation. Errors from consideration of energy-dependence in a variety of "reasonable models"

Effective Field Theory

- Simpler theory that reproduces results of full theory at long distances
- Short-distance details irrelevant for long-distance (low-momentum) physics, e.g., multipole expansion
- Expansion in ratio of physical scales: $p/\Lambda_b = \lambda_b/r$
- Symmetries of underlying theory limit possibilities: all possible terms up to a given order present in EFT
- Short distances: unknown coefficients at a given order in the expansion need to be determined. Symmetry relates their impact on different processes
- Examples: standard model, chiral EFT, Halo EFT

Effective Field Theory

Monet (1881)

Effective Field Theory

Monet (1881)

- Simpler theory that reproduces results of full theory at long distances
- Short-distance details irrelevant for long-distance (low-momentum) physics, e.g., multipole expansion
- Expansion in ratio of physical scales: $p/\Lambda_b = \lambda_b/r$
- Symmetries of underlying theory limit possibilities: all possible terms up to a given order present in EFT
- Short distances: unknown coefficients at a given order in the expansion need to be determined. Symmetry relates their impact on different processes
- Examples: standard model, chiral EFT, Halo EFT
 Error grows as first omitted term in expansion

Halo EFT

Halo EFT

• Define $R_{halo} = \langle r^2 \rangle^{1/2}$. Seek EFT expansion in R_{core}/R_{halo} . Valid for $\lambda \leq R_{halo}$

- Typically R=R_{core}~2 fm.And since <r²> is related to the neutron separation energy we are looking for systems with neutron separation energies less than I MeV
- By this definition the deuteron is the lightest halo nucleus, and the pionless EFT for few-nucleon systems is a specific case of halo EFT

p-wave bound states and capture thereto

Hammer & DP, NPA (2011)

At LO: p-wave In halo described solely by its ANC and binding energy

$$u_1(r) = A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right) \qquad \gamma_1 = \sqrt{2m_R B}$$

Capture to the p-wave state proceeds via the one-body EI operator:
 "external direct capture"

E1
$$\propto \int_0^\infty dr \, u_0(r) r u_1(r); \quad u_0(r) = 1 - \frac{r}{a}$$

■ NLO: piece of the amplitude representing capture at short distances, represented by a contact operator ⇒ there is an LEC that must be fit

Zhang, Nollett, DP, Phys. Rev. C 89, 051602 (2014); Ryberg, Forssen, Hammer, Platter, EPJA (2014)

In this system $R_{core} \sim 3$ fm, $R_{halo} \sim 15$ fm; scale of Coulomb interactions: $k_C = Q_c Q_n \alpha_{EM} M_R = 24$ MeV; $a \sim 10$ fm, both also $\sim R_{halo}$

Zhang, Nollett, DP, Phys. Rev. C 89, 051602 (2014); Ryberg, Forssen, Hammer, Platter, EPJA (2014)

- In this system $R_{core} \sim 3$ fm, $R_{halo} \sim 15$ fm; scale of Coulomb interactions: $k_C = Q_c Q_n \alpha_{EM} M_R = 24$ MeV; $a \sim 10$ fm, both also $\sim R_{halo}$
- Complication: S=1 and S=2 channels

Zhang, Nollett, DP, Phys. Rev. C 89, 051602 (2014); Ryberg, Forssen, Hammer, Platter, EPJA (2014)

- In this system $R_{core} \sim 3$ fm, $R_{halo} \sim 15$ fm; scale of Coulomb interactions: $k_C = Q_c Q_n \alpha_{EM} M_R = 24$ MeV; $a \sim 10$ fm, both also $\sim R_{halo}$
- Complication: S=1 and S=2 channels
- Can also incorporate the excited 1/2- in 7Be

Zhang, Nollett, DP, Phys. Rev. C 89, 051602 (2014); Ryberg, Forssen, Hammer, Platter, EPJA (2014)

- In this system $R_{core} \sim 3$ fm, $R_{halo} \sim 15$ fm; scale of Coulomb interactions: $k_C = Q_c Q_n \alpha_{EM} M_R = 24$ MeV; $a \sim 10$ fm, both also $\sim R_{halo}$
- Complication: S=1 and S=2 channels
- Can also incorporate the excited 1/2- in 7Be

Zhang, Nollett, DP, Phys. Rev. C 89, 051602 (2014); Ryberg, Forssen, Hammer, Platter, EPJA (2014)

- In this system $R_{core} \sim 3$ fm, $R_{halo} \sim 15$ fm; scale of Coulomb interactions: $k_C = Q_c Q_n \alpha_{EM} M_R = 24$ MeV; $a \sim 10$ fm, both also $\sim R_{halo}$
- Complication: S=1 and S=2 channels
- Can also incorporate the excited 1/2- in 7Be

 $P_{p,\sigma}^{c,a} \xrightarrow{k \lambda} \xrightarrow{k \lambda}$

Scattering wave functions are linear combinations of Coulomb wave functions
 F₀ and G₀. Bound state wave function=the appropriate Whittaker function.

Zhang, Nollett, DP, Phys. Rev. C 89, 051602 (2014); Ryberg, Forssen, Hammer, Platter, EPJA (2014)

- In this system $R_{core} \sim 3$ fm, $R_{halo} \sim 15$ fm; scale of Coulomb interactions: $k_C = Q_c Q_n \alpha_{EM} M_R = 24$ MeV; $a \sim 10$ fm, both also $\sim R_{halo}$
- Complication: S=1 and S=2 channels
- Can also incorporate the excited 1/2- in 7Be

 $P_{c} \stackrel{a}{\longrightarrow} \stackrel{k}{\longrightarrow} \stackrel{k}{\longrightarrow$

Scattering wave functions are linear combinations of Coulomb wave functions
 F₀ and G₀. Bound state wave function=the appropriate Whittaker function.

$$S(E) = f(E) \sum_{s} C_s^2 \left[\left| S_{\text{EC}} \left(E; \delta_s(E) \right) \right|^2 + \left| \mathcal{D}(E) \right|^2 \right].$$
 Four parameters at leading order

Additional ingredients at NLO

 $S(E) = f(E) \sum_{s} C_{s}^{2} \left[\left| \mathcal{S}_{\text{EC}} \left(E; \delta_{s}(E) \right) + \overline{L}_{s} \mathcal{S}_{\text{SD}} \left(E; \delta_{s}(E) \right) + \epsilon_{s} \mathcal{S}_{\text{CX}} \left(E; \delta_{s}(E) \right) \right|^{2} + \left| \mathcal{D}(E) \right|^{2} \right].$

Effective ranges in both ⁵S₂ and ³S₁: r₂ and r₁

Core excitation: determined by ratio of ⁸B couplings of ⁷Be^{*}p and ⁷Be-p states: E₁

LECs associated with contact interaction, one each for S=I and S=2: L₁ and L₂

Additional ingredients at NLO

 $S(E) = f(E) \sum_{s} C_{s}^{2} \left[\left| \mathcal{S}_{\text{EC}} \left(E; \delta_{s}(E) \right) + \overline{L}_{s} \mathcal{S}_{\text{SD}} \left(E; \delta_{s}(E) \right) + \epsilon_{s} \mathcal{S}_{\text{CX}} \left(E; \delta_{s}(E) \right) \right|^{2} + \left| \mathcal{D}(E) \right|^{2} \right].$

Effective ranges in both ⁵S₂ and ³S₁: r₂ and r₁

Core excitation: determined by ratio of ⁸B couplings of ⁷Be^{*}p and ⁷Be-p states: E₁

LECs associated with contact interaction, one each for S=I and S=2: L₁ and L₂
Additional ingredients at NLO

Effective ranges in both ⁵S₂ and ³S₁: r₂ and r₁

Core excitation: determined by ratio of ⁸B couplings of ⁷Be^{*}p and ⁷Be-p states: E₁

LECs associated with contact interaction, one each for S=I and S=2: L₁ and L₂

Data for ⁷Be + $p \rightarrow {}^{8}B + \gamma_{EI}$

• 42 data points for 100 keV < $E_{c.m.}$ < 500 keV

- Junghans (BEI and BE3)
- Fillipone
- Baby
- Hammache (1998 and 2001)

Data for ⁷Be + $p \rightarrow {}^{8}B + \gamma_{EI}$

42 data points for 100 keV < E_{c.m.} < 500 keV < CMEs</p>

- Junghans (BEI and BE3)
- Fillipone
- Baby
- Hammache (1998 and 2001)

- 2.7% and 2.3%
- II.25%
- **5%**
- 2.2% (1998)

Data for ⁷Be + $p \rightarrow {}^{8}B + \gamma_{EI}$

• 42 data points for 100 keV < $E_{c.m.}$ < 500 keV • CMEs

- Junghans (BEI and BE3)
- Fillipone
- Baby
- Hammache (1998 and 2001)

- 2.7% and 2.3%
- II.25%
- **5%**
- 2.2% (1998)

- Subtract MI resonance: negligible impact at 500 keV and below
- Deal with CMEs by introducing five additional parameters, ξ_i

 $\operatorname{pr}(\vec{g}, \{\xi_i\} | D; T; I) \propto \operatorname{pr}(D | \vec{g}, \{\xi_i\}; T; I) \operatorname{pr}(\vec{g}, \{\xi_i\} | I),$

$$\ln \operatorname{pr} \left(D | \vec{g}, \{\xi_i\}; T; I \right) = c - \sum_{j=1}^{N} \frac{\left[(1 - \xi_j) S(\vec{g}; E_j) - D_j \right]^2}{2\sigma_j^2},$$

Bayes:

pr $(\vec{g}, \{\xi_i\}|D; T; I) \propto \text{pr}(D|\vec{g}, \{\xi_i\}; T; I) \text{pr}(\vec{g}, \{\xi_i\}|I),$

First factor: likelihood

$$\ln \operatorname{pr} \left(D | \vec{g}, \{\xi_i\}; T; I \right) = c - \sum_{j=1}^{N} \frac{\left[(1 - \xi_j) S(\vec{g}; E_j) - D_j \right]^2}{2\sigma_j^2},$$

Bayes:

pr $(\vec{g}, \{\xi_i\}|D; T; I) \propto \text{pr}(D|\vec{g}, \{\xi_i\}; T; I) \text{pr}(\vec{g}, \{\xi_i\}|I),$

First factor: likelihood

$$\ln \operatorname{pr} \left(D | \vec{g}, \{\xi_i\}; T; I \right) = c - \sum_{j=1}^{N} \frac{\left[(1 - \xi_j) S(\vec{g}; E_j) - D_j \right]^2}{2\sigma_j^2},$$

- Second factor: priors
 - Independent gaussian priors for $\xi_{i,}$ centered at zero and with width=CME
 - Gaussian priors for $a_{S=1}$ and $a_{S=2}$, based on Angulo et al. measurement
 - Other EFT parameters, r_{S=1}, r_{S=2}, L₁, L₂, ANCs, E₁, assigned flat priors, corresponding to natural ranges
 - No s-wave resonance below 600 keV

Bayes:

pr $(\vec{g}, \{\xi_i\}|D; T; I) \propto \text{pr}(D|\vec{g}, \{\xi_i\}; T; I) \text{pr}(\vec{g}, \{\xi_i\}|I),$

First factor: likelihood

$$\ln \operatorname{pr} \left(D | \vec{g}, \{\xi_i\}; T; I \right) = c - \sum_{j=1}^{N} \frac{\left[(1 - \xi_j) S(\vec{g}; E_j) - D_j \right]^2}{2\sigma_j^2},$$

- Second factor: priors
 - Independent gaussian priors for ξ_i, centered at zero and with width=CME
 - Gaussian priors for $a_{S=1}$ and $a_{S=2}$, based on Angulo et al. measurement
 - Other EFT parameters, r_{S=1}, r_{S=2}, L₁, L₂, ANCs, E₁, assigned flat priors, corresponding to natural ranges
 - No s-wave resonance below 600 keV

Outputs and lessons

- Posteriors on parameters tell us about physics: which combinations are actually constrained?
- How do we see when parameters are not well constrained?
- Extrapolation
- Does EFT truncation error at NLO affect the answer?
- Feedback with experiment: systematic errors? Future experiments?

Posterior plots⇒Physics

$$\operatorname{pr}(g_1, g_2 | D; T; I) = \int \operatorname{pr}(\vec{g}, \{\xi_i\} | D; T; I) \ d\xi_1 \dots d\xi_5 dg_3 \dots dg_9$$

Posterior plots⇒Physics

$$\operatorname{pr}(g_1, g_2 | D; T; I) = \int \operatorname{pr}(\vec{g}, \{\xi_i\} | D; T; I) \ d\xi_1 \dots d\xi_5 dg_3 \dots dg_9$$

ANCs are highly correlated but sum of squares strongly constrained

Posterior plots⇒Physics

$$\operatorname{pr}(g_1, g_2 | D; T; I) = \int \operatorname{pr}(\vec{g}, \{\xi_i\} | D; T; I) \ d\xi_1 \dots d\xi_5 dg_3 \dots dg_9$$

- ANCs are highly correlated but sum of squares strongly constrained
- One spin-1 short-distance parameter: $0.33 \ \overline{L}_1 / (\text{fm}^{-1}) \epsilon_1$

Another example of posterior plots

Wesolowski, Furnstahl, DP, in preparation

- Parameter estimation for a particular piece of the NN potential at N3LO in the chiral EFT expansion
- Posterior plot allows diagnosis of parameter degeneracy D¹(150)-D²(150)
- Which we also understand analytically

$$\langle {}^{1}S_{0}|V_{NN}|{}^{1}S_{0}\rangle = D_{(1S0)}^{1} p^{2} p'^{2} + D_{(1S0)}^{2} (p^{4} + p'^{4})$$

$$= \frac{1}{4} (D_{(1S0)}^{1} + 2D_{(1S0)}^{2})(p^{2} + p'^{2})^{2} - \frac{1}{4} (D_{(1S0)}^{1} - 2D_{(1S0)}^{2})(p^{2} - p'^{2})^{2} ,$$

$$= \frac{1}{4} (D_{(1S0)}^{1} + 2D_{(1S0)}^{2})(p^{2} + p'^{2})^{2} - \frac{1}{4} (D_{(1S0)}^{1} - 2D_{(1S0)}^{2})(p^{2} - p'^{2})^{2} ,$$

42 data points,
7 parameters "fit" to these data,
5 ξ_i,'s fixed to their mean values

Is it a "good fit"?

42 data points,
7 parameters "fit" to these data,
5 ξ_i,'s fixed to their mean values

- Is it a "good fit"?
- Did the experimentalists understand their systematic errors?

- Is it a "good fit"?
- Did the experimentalists understand their systematic errors?
- Are there parameters that are not well constrained by these data?

$$\operatorname{pr}\left(\bar{F}|D;T;I\right) = \int \operatorname{pr}\left(\bar{g},\{\xi_i\}|D;T;I\right)\delta(\bar{F}-F(\bar{g}))d\xi_1\dots d\xi_5 d\bar{g}$$

$$\operatorname{pr}\left(\bar{F}|D;T;I\right) = \int \operatorname{pr}\left(\vec{g},\{\xi_i\}|D;T;I\right)\delta(\bar{F}-F(\vec{g}))d\xi_1\dots d\xi_5 d\vec{g}$$

$$\operatorname{pr}\left(\bar{F}|D;T;I\right) = \int \operatorname{pr}\left(\bar{g},\{\xi_i\}|D;T;I\right)\delta(\bar{F}-F(\bar{g}))d\xi_1\dots d\xi_5 d\bar{g}$$

$$\operatorname{pr}\left(\bar{F}|D;T;I\right) = \int \operatorname{pr}\left(\bar{g},\{\xi_i\}|D;T;I\right)\delta(\bar{F}-F(\bar{g}))d\xi_1\dots d\xi_5 d\bar{g}$$

Truncation error

- N2LO correction=0 (technically only in absence of excited state)
- EFT s-wave scattering corrections (shape parameter)~0.8%
- E2, MI contributions < 0.01%, Radiative corrections: ~0.1%</p>
- So first correction is at N3LO, i.e., $\overline{L}_i \to \overline{L}_i + k^2 \overline{L}'_i$

Planning improvements

Use extrapolant to simulate impact of hypothetical future data that could inform posterior pdf for S(0)

Left-to-right: 42 data points all of similar quality to Junghans et al.

A:ANC S: a_{S=1} and a_{S=2} L: short-distance

Note that I keV uncertainty in S_{1p} of ⁸B may not be negligible effect

A sneak peek at $^{3}He(^{4}He, \gamma)$

Zhang, Nollett, DP, in preparation

A sneak peek at $^{3}He(^{4}He, \gamma)$

Summary

EFT provides following features for capture reactions

- Separation of long- and short-distance dynamics
- Model-independent (and in two-body case) analytic form for S(E)
- Ability to reproduce "reasonable models"
- Extrapolation problem formulated as a marginalization over models $pr(S(0)|data, I) = \int dmodels pr(S(0)|model, I) pr(model|data, I)$
- Taking a variety of "reasonable models" and using them to extrapolate may **over**estimate the model uncertainty
- Application of Halo EFT to ⁷Be(p,γ)⁸B produces new S(0), consistent with SFII, but with factor two smaller uncertainty

$$S(0) = 21.33^{+0.66}_{-0.69}$$
 eV b

Stuff I learnt from this study

- Precise extrapolation can be done even when you don't have 10*n data
- Model uncertainty can be accommodated, and standard methods may over-estimate it. But it helps to be dong EFT...
- Priors ultimately diagnosable: unconstrained parameters return the prior, and the results we looked at were not sensitive to different choices of prior. "Robust Bayesian Analysis"?
- Projected posterior reveals which combinations of parameters are constrained/affect this observable
- Truncation errors can be assessed
- Future experiments can be planned for maximum impact

Extensions, references

- Simultaneous fit to 7Be p scattering data: requires inclusion of resonances;
 "Hierarchical Bayes"
- Coulomb dissociation data?
- Same techniques applied to ${}^{3}\text{He}({}^{4}\text{He},\gamma)$ Higa, Rupak, Vaghani, arXiv:1612.08959
- Other, and more sophisticated, examples of Bayesian Uncertainty Quantification, see BUQEYE collaboration papers
 - Quantifying uncertainties due to omitted higher-order terms
 - Bayesian parameter estimation
- Review of Halo EFT

Fursntahl, Klco, DP, Wesolowki, PRC 92, 024005 (2015) Melendez, Furnstahl, Wesolowski, arXiv:1704.03308

Wesolowski, Klco, Furnstahl, DP, Thapaliya, JPG 43, 074001 (2016)

Hammer, Ji, DP, JPG 44, 103002 (2017)

Backup Slides

Halo nuclei

http://nupecc.org

Halo nuclei

http://nupecc.org

A halo nucleus as one in which a few (1, 2, 3, 4, ...) nucleons live at a significant distance from a nuclear core.

Halo nuclei

http://nupecc.org

- A halo nucleus as one in which a few (1, 2, 3, 4, ...) nucleons live at a significant distance from a nuclear core.
- Halo nuclei are characterized by small nucleon binding energies, large interaction cross sections, large radii, large E1 transition strengths.

It doesn't:

It doesn't:

Need or discuss spectroscopic factors

It doesn't:

- Need or discuss spectroscopic factors
- Need or discuss (interior) nodes of the wave function
What it does and doesn't do

It doesn't:

- Need or discuss spectroscopic factors
- Need or discuss (interior) nodes of the wave function
- Seek to compete with *ab initio* calculations for structure

What it does and doesn't do

It doesn't:

- Need or discuss spectroscopic factors
- Need or discuss (interior) nodes of the wave function
- Seek to compete with *ab initio* calculations for structure

It does:

What it does and doesn't do

It doesn't:

- Need or discuss spectroscopic factors
- Need or discuss (interior) nodes of the wave function
- Seek to compete with ab initio calculations for structure

It does:

- Connect structure and reactions, including in multi-nucleon halos
- Collect information from different theories/experiments in one calculation
- Treat same physics as cluster models, in a systematically improvable way
- Provide information on inter-dependencies of low-energy observables, including along the core + n, core + 2n, core + 3n, etc. chain

Our approach

- S-wave (and P-wave) states generated by cn contact interactions
- No discussion of nodes, details of n-core interaction, spectroscopic factors

$$u_0(r) = A_0 \exp(-\gamma_0 r)$$

- IPC: input at LO: neutron separation energy of s-wave state.
- A₀ ("wave-function renormalization") can be fit at NLO.
- P-wave states require two inputs already at LO.

INp

⁸Li ground state is 2⁺: both ⁵P₂ and ³P₂ components

Zhang, Nollett, Phillips, PRC (2014) c.f. Rupak, Higa, PRL 106, 222501 (2011); Fernando, Higa, Rupak, EPJA 48, 24 (2012)

⁸Li first excited state: I⁺, bound by I.05 MeV

⁸Li ground state is 2⁺: both ⁵P₂ and ³P₂ components

Zhang, Nollett, Phillips, PRC (2014) c.f. Rupak, Higa, PRL 106, 222501 (2011); Fernando, Higa, Rupak, EPJA 48, 24 (2012)

- ⁸Li first excited state: I⁺, bound by I.05 MeV
- Input at LO: $B_1=2.03$ MeV; $B_1^*=1.05$ MeV $\Rightarrow \gamma_1=58$ MeV; $\gamma_1^*=42$ MeV. $\gamma_1 \sim 1/R_{halo}$

⁸Li ground state is 2⁺: both ⁵P₂ and ³P₂ components

Zhang, Nollett, Phillips, PRC (2014) c.f. Rupak, Higa, PRL 106, 222501 (2011); Fernando, Higa, Rupak, EPJA 48, 24 (2012)

- ⁸Li first excited state: I⁺, bound by I.05 MeV
- Input at LO: $B_1=2.03$ MeV; $B_1^*=1.05$ MeV $\Rightarrow \gamma_1=58$ MeV; $\gamma_1^*=42$ MeV. $\gamma_1 \sim 1/R_{halo}$
- Also include 1/2- excited state of ⁷Li as explicit d.o.f.

⁸Li ground state is 2⁺: both ⁵P₂ and ³P₂ components

Zhang, Nollett, Phillips, PRC (2014) c.f. Rupak, Higa, PRL 106, 222501 (2011); Fernando, Higa, Rupak, EPJA 48, 24 (2012)

- ⁸Li first excited state: I⁺, bound by I.05 MeV
- Input at LO: B₁=2.03 MeV; B₁*=1.05 MeV $\Rightarrow \gamma_1 = 58$ MeV; $\gamma_1 * = 42$ MeV. $\gamma_1 \sim 1/R_{halo}$
- Also include 1/2- excited state of ⁷Li as explicit d.o.f.
- Need to also fix 2+2 p-wave ANCs at LO. (I+2 ANCs for |7Li*>|n> component.)

⁸Li ground state is 2⁺: both ⁵P₂ and ³P₂ components

Zhang, Nollett, Phillips, PRC (2014) c.f. Rupak, Higa, PRL 106, 222501 (2011); Fernando, Higa, Rupak, EPJA 48, 24 (2012)

 $r_1 \sim 1/R_{core}$

- ⁸Li first excited state: I⁺, bound by I.05 MeV
- Input at LO: B₁=2.03 MeV; B₁*=1.05 MeV $\Rightarrow \gamma_1 = 58$ MeV; $\gamma_1 * = 42$ MeV. $\gamma_1 \sim 1/R_{halo}$
- Also include 1/2- excited state of ⁷Li as explicit d.o.f.
- Need to also fix 2+2 p-wave ANCs at LO. (I+2 ANCs for |7Li*>|n> component.)
- VMC calculation with AV18 + UIX gives all ANCs: infer r₁=-1.43 fm⁻¹

⁸Li ground state is 2⁺: both ⁵P₂ and ³P₂ components

Zhang, Nollett, Phillips, PRC (2014) c.f. Rupak, Higa, PRL 106, 222501 (2011); Fernando, Higa, Rupak, EPJA 48, 24 (2012)

⁸Li first excited state: I⁺, bound by I.05 MeV

- Input at LO: B₁=2.03 MeV; B₁*=1.05 MeV $\Rightarrow \gamma_1 = 58$ MeV; $\gamma_1 * = 42$ MeV. $\gamma_1 \sim 1/R_{halo}$
- Also include 1/2- excited state of ⁷Li as explicit d.o.f.
- Need to also fix 2+2 p-wave ANCs at LO. (I+2 ANCs for |7Li*>|n> component.)

 $r_1 \sim 1/R_{core}$

	A _(3P2)	A _(5P2)	A(3P2*)	A _(3P1) *	A _(5P1) *
Nollett	-0.283(12)	-0.591(12)	-0.384(6)	0.220(6)	0.197(5)
Trache	-0.284(23)	-0.593(23)		0.187(16)	0.217(13)

⁷Li ground state is 3/2-: S-wave n scattering in ⁵S₂ and ³S₁

⁷Li ground state is 3/2-: S-wave n scattering in ⁵S₂ and ³S₁

 $a_{s=2}=-3.63(5)$ fm, $a_{s=1}=0.87(7)$ fm

⁷Li ground state is 3/2-: S-wave n scattering in ⁵S₂ and ³S₁

• $a_{S=2}=-3.63(5)$ fm, $a_{S=1}=0.87(7)$ fm

⁷Li ground state is 3/2-: S-wave n scattering in ⁵S₂ and ³S₁

• LO calculation: S=2 (with ISI) and S=1 into P-wave bound state $E1 \propto \int_0^\infty dr \, u_0(r) r u_1(r);$ $u_0(r) = 1 - \frac{r}{a}; u_1(r) = A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right)$

Analysis: Zhang, Nollett, Phillips, PRC (2014) Data: Barker (1996), cf. Nagai et al. (2005)

Analysis: Zhang, Nollett, Phillips, PRC (2014) Data: Barker (1996), cf. Nagai et al. (2005)

Analysis: Zhang, Nollett, Phillips, PRC (2014) Data: Barker (1996), cf. Nagai et al. (2005)

$$\frac{\sigma({}^{5}S_{2} \to 2^{+})}{\sigma(\to 2^{+})} = 0.95$$

Analysis: Zhang, Nollett, Phillips, PRC (2014) Data: Barker (1996), cf. Nagai et al. (2005)

$$\frac{\sigma({}^{5}S_{2} \to 2^{+})}{\sigma(\to 2^{+})} = 0.95$$

Experiment > 0.86

Barker, 1996

Analysis: Zhang, Nollett, Phillips, PRC (2014) Data: Barker (1996), cf. Nagai et al. (2005)

$$\frac{\sigma({}^{5}S_{2} \to 2^{+})}{\sigma(\to 2^{+})} = 0.95$$

Experiment > 0.86

Barker, 1996

$$\frac{\sigma(\rightarrow 2^+)}{\sigma(\rightarrow 2^+) + \sigma(\rightarrow 1^+)} = 0.89$$

Analysis: Zhang, Nollett, Phillips, PRC (2014) Data: Barker (1996), cf. Nagai et al. (2005)

$$\frac{\sigma({}^{5}S_{2} \to 2^{+})}{\sigma(\to 2^{+})} = 0.95$$

Experiment > 0.86

Barker, 1996

$$\frac{\sigma(\rightarrow 2^+)}{\sigma(\rightarrow 2^+) + \sigma(\rightarrow 1^+)} = 0.89$$

Experiment=0.88 Lynn et al., 1991

Analysis: Zhang, Nollett, Phillips, PRC (2014) Data: Barker (1996), cf. Nagai et al. (2005)

$$\frac{\sigma({}^{5}S_{2} \to 2^{+})}{\sigma(\to 2^{+})} = 0.95$$

Experiment > 0.86

Barker, 1996

$$\frac{\sigma(\rightarrow 2^+)}{\sigma(\rightarrow 2^+) + \sigma(\rightarrow 1^+)} = 0.89$$

Experiment=0.88

Lynn et al., 1991

Dynamics predicted through ab initio input

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channe

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-I/2 channel
Spin-3/2 channel

Expand in R_{core}/R_{halo}:

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channel
$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4}$$
No FSI

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channel

Expand in R_{core}/R_{halo}:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \qquad \text{No FSI}$$
$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \left(r_0\gamma_0 + \frac{2\gamma_0}{3r_1} \frac{\gamma_0^2 + 3p'^2}{p'^2 + \gamma_1^2}\right)$$

c.f. Rupak & Higa arXiv:1101.0207

No FSI

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Expand in R_{core}/R_{halo}:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \qquad \text{No FSI}$$
$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \left(r_0\gamma_0 + \frac{2\gamma_0}{3r_1} \frac{\gamma_0^2 + 3p'^2}{p'^2 + \gamma_1^2}\right)$$

Wf renormalization

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^{2} Z_{eff}^{2} \frac{m_{R}}{2\pi^{2}} A_{0}^{2} \left(\frac{p'^{3} [2p'^{3} \cot(\delta^{(1/2)}(p')) + \gamma_{0}^{3} + 3\gamma_{0}p'^{2}]^{2}}{[p'^{6} + p'^{6} \cot^{2}(\delta^{(1/2)}(p'))](p'^{2} + \gamma_{0}^{2})^{4}} + \frac{8p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \right)$$

$$f$$
Spin-I/2 channel
Spin-3/2 channel
$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{LO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad \text{No FSI}$$

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE}^{NLO} = e^{2} Z_{eff}^{2} \frac{3m_{R}}{2\pi^{2}} \frac{8\gamma_{0}p'^{3}}{(p'^{2} + \gamma_{0}^{2})^{4}} \qquad (r_{0}\gamma_{0} + \frac{2\gamma_{0}}{3r_{1}} \frac{\gamma_{0}^{2} + 3p'^{2}}{p'^{2} + \gamma_{1}^{2}})$$
Wf renormalization
$$2\mathbf{P}_{1/2}$$
-wave FSI

c.f. Rupak & Higa arXiv:1101.0207

Straightforward computation of diagrams yields:

$$\frac{d\mathbf{B}(\mathbf{E1})}{dE} = e^2 Z_{eff}^2 \frac{m_R}{2\pi^2} A_0^2 \left(\frac{p'^3 [2p'^3 \cot(\delta^{(1/2)}(p')) + \gamma_0^3 + 3\gamma_0 p'^2]^2}{[p'^6 + p'^6 \cot^2(\delta^{(1/2)}(p'))](p'^2 + \gamma_0^2)^4} + \frac{8p'^3}{(p'^2 + \gamma_0^2)^4} \right)$$

$$\uparrow$$
Spin-1/2 channel
Spin-3/2 channel

Expand in R_{core}/R_{halo}:

$$\frac{dB(E1)}{dE}^{LO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \qquad \text{No FSI}$$

$$\frac{dB(E1)}{dE}^{NLO} = e^2 Z_{eff}^2 \frac{3m_R}{2\pi^2} \frac{8\gamma_0 p'^3}{(p'^2 + \gamma_0^2)^4} \left(r_0 \gamma_0 + \frac{2\gamma_0}{3r_1} \frac{\gamma_0^2 + 3p'^2}{p'^2 + \gamma_1^2} \right)$$

$$\frac{V}{V} f \text{ renormalization} \qquad 2P_{1/2} \text{-wave FSI}$$

$$\cdot \text{ Higher-order corrections to phase shift at NNLO. Appearance of S-to-2P_{1/2} E1 counterterm also at that order.}$$

Lagrangian: shallow S- and P-states

$$\mathcal{L} = c^{\dagger} \left(i\partial_{t} + \frac{\nabla^{2}}{2M} \right) c + n^{\dagger} \left(i\partial_{t} + \frac{\nabla^{2}}{2m} \right) n$$

+ $\sigma^{\dagger} \left[\eta_{0} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{nc}} \right) + \Delta_{0} \right] \sigma + \pi^{\dagger}_{j} \left[\eta_{1} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{nc}} \right) + \Delta_{1} \right] \pi_{j}$
- $g_{0} \left[\sigma n^{\dagger} c^{\dagger} + \sigma^{\dagger} nc \right] - \frac{g_{1}}{2} \left[\pi^{\dagger}_{j} (n \ i \overleftrightarrow{\nabla}_{j} \ c) + (c^{\dagger} \ i \overleftrightarrow{\nabla}_{j} \ n^{\dagger}) \pi_{j} \right]$
- $\frac{g_{1}}{2} \frac{M - m}{M_{nc}} \left[\pi^{\dagger}_{j} \ i \overrightarrow{\nabla}_{j} \ (nc) - i \overleftrightarrow{\nabla}_{j} \ (n^{\dagger} c^{\dagger}) \pi_{j} \right] + \dots,$

c, n:"core", "neutron" fields. c: boson, n: fermion.

- σ , π_j : S-wave and P-wave fields
- Minimal substitution generates leading EM couplings

Dressing the p-wave state

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

Dyson equation for (cn)-system propagator

$$D_{\pi}(p) = \frac{1}{\Delta_1 + \eta_1 [p_0 - \mathbf{p}^2/(2M_{nc})] - \Sigma_{\pi}(p)}$$

- Here both Δ_1 and g_1 are mandatory for renormalization at LO

$$\Sigma_{\pi}(p) = -\frac{m_R g_1^2 k^2}{6\pi} \left[\frac{3}{2}\mu + ik\right]$$

Reproduces ERE. But here (cf. s waves) cannot take r₁=0 at LO

Dressing the p-wave state

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

Dyson equation for (cn)-system propagator

$$D_{\pi}(p) = \frac{1}{\Delta_1 + \eta_1 [p_0 - \mathbf{p}^2/(2M_{nc})] - \Sigma_{\pi}(p)}$$

- Here both Δ_1 and g_1 are mandatory for renormalization at LO

$$\Sigma_{\pi}(p) = -\frac{m_R g_1^2 k^2}{6\pi} \left[\frac{3}{2}\mu + ik\right]$$

Reproduces ERE. But here (cf. s waves) cannot take r₁=0 at LO

• If
$$a_1 > 0$$
 then pole is at $k=i\gamma_1$ with $B_1=\gamma_1^2/(2m_R)$:
 $D_{\pi}(p) = -\frac{3\pi}{m_R^2 g_1^2} \frac{2}{r_1 + 3\gamma_1} \frac{i}{p_0 - \mathbf{p}^2/(2M_{nc}) + B_1} + \text{regular}$
Scales in the ⁸B system

http://www.tunl.duke.edu

Zhang, Nollett, Phillips, PRC (2014) cf. Ryberg, Forssen, Hammer, Platter, EPJA (2014)

$$S(E) = f(E) \sum_{s} C_s^2 \left[\left| \mathcal{S}_{\text{EC}} \left(E; \delta_s(E) \right) \right|^2 + \left| \mathcal{D}(E) \right|^2 \right]$$

Zhang, Nollett, Phillips, PRC (2014) cf. Ryberg, Forssen, Hammer, Platter, EPJA (2014)

Zhang, Nollett, Phillips, PRC (2014) cf. Ryberg, Forssen, Hammer, Platter, EPJA (2014)

Four parameters at leading order

Zhang, Nollett, Phillips, PRC (2014) cf. Ryberg, Forssen, Hammer, Platter, EPJA (2014)

Four parameters at leading order

$$S(E) = f(E) \sum_{s} C_s^2 \left[\left| \mathcal{S}_{\text{EC}} \left(E; \delta_s(E) \right) \right|^2 + \left| \mathcal{D}(E) \right|^2 \right]$$

	A _(3P2) (fm ^{-1/2})	A _(5P2) (fm ^{-1/2})	$a_{(S=1)}$ (fm)	a _(S=2) (fm)
Nollett	-0.315(19)	-0.662(19)		
Navratil et al.	-0.294	-0.65	-5.2	-15.3
Tabacaru	-0.294(45)	-0.615(45)		
Angulo			25(9)	-7(3)

Proton capture on ⁷Be at LO: results

• ANCs yield r_1 =-0.34 fm⁻¹, consistent with estimated scale Λ

Sensitivity to input a_{S=2} and a_{S=1} at higher energies

At solar energies it's all about the ANCs

 Halo EFT is also the EFT of all the models used to extrapolate the cross section in "Solar Fusion II"

- Halo EFT is also the EFT of all the models used to extrapolate the cross section in "Solar Fusion II"
- Differences are sub-% level between 0 and 0.5 MeV

- Halo EFT is also the EFT of all the models used to extrapolate the cross section in "Solar Fusion II"
- Differences are sub-% level between 0 and 0.5 MeV
- Size of S(0) over-predicted in all models; curves rescaled in SFII fits

- Halo EFT is also the EFT of all the models used to extrapolate the cross section in "Solar Fusion II"
- Differences are sub-% level between 0 and 0.5 MeV
- Size of S(0) over-predicted in all models; curves rescaled in SFII fits
- Parameters generally obey a~I/R_{halo}, r ~R_{core}, L~R_{core}, as expected

$C^2_{(^3P_2)}$	$a_{(^{3}S_{1})}$	$r_{(^{3}S_{1})}$	ε_1	\overline{L}_1	$C^2_{({}^5P_2)}$	$a_{({}^{5}S_{2})}$	$r_{({}^{5}S_{2})}$	\overline{L}_2
0.200687	15.9977	1.18336	0	1.11587	0.533594	-10.0425	3.93347	2.68987
0.200661	24.9966	1.36338	0	1.27055	0.533456	-7.03034	5.02489	3.10464
0.200655	33.9933	1.44879	0	1.3357	0.533305	-4.02847	8.56435	4.18777
0.109001	-4.14549	6.79899	0	4.80453	0.541543	-6.9096	3.57291	3.73317

TABLE IV: The EFT parameters fitted to other models. The unit for ANC squared is fm⁻¹, for scattering length, effective range, and $\overline{L}_{1,2}$ are fm . ε_1 is unitless. These units are implicitly

- There are many circumstances where EFT is not directly applicable, but principles can still be useful
 - Separation of long- and short-distance dynamics
 - Inclusion of ab initio information: LECs
 - Model marginalization

- There are many circumstances where EFT is not directly applicable, but principles can still be useful
 - Separation of long- and short-distance dynamics
 - Inclusion of ab initio information: LECs
 - Model marginalization
- Extrapolation problem formulated as a marginalization over models

 $pr(S(0)|data, I) = \int dmodels pr(S(0)|model, I) pr(model|data, I)$

- There are many circumstances where EFT is not directly applicable, but principles can still be useful
 - Separation of long- and short-distance dynamics
 - Inclusion of ab initio information: LECs
 - Model marginalization
- Extrapolation problem formulated as a marginalization over models $pr(S(0)|data, I) = \int dmodels pr(S(0)|model, I) pr(model|data, I)$
- EFT particularly well-suited to this, since one can guarantee integration over space of all possible theories

- There are many circumstances where EFT is not directly applicable, but principles can still be useful
 - Separation of long- and short-distance dynamics
 - Inclusion of ab initio information: LECs
 - Model marginalization
- Extrapolation problem formulated as a marginalization over models $pr(S(0)|data, I) = \int dmodels pr(S(0)|model, I) pr(model|data, I)$
- EFT particularly well-suited to this, since one can guarantee integration over space of all possible theories
- Taking a variety of "reasonable models" and using them to extrapolate may overestimate the model uncertainty