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The Skyrme forces
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Skyrme interaction (1956) is a very low-momentum phenomenological 
effective potential with a 2-body part to the 2nd-order and a 3-body part.

3-body term in Skyrme force:
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Usually a fractional power density 

dependency is introduced to simulate 3-body 

and many body forces; the power dependency 

is an open question

γ ranges from 1/6 to 1
γ=1/6 in SLy4, SkM*, SkP;  0.25 in SkIx
γ=1/3 in Gogny, Bsk1
UNEDF0=0.32, UNEDF1=0.27

Important for saturation properties

Too large incompressibility

Tensor term



Various Optimizations

 UNEDF Skyrme forces have been extremely optimized using POUNDERS

 Brussel Skyrme forces with phenomenological corrections obtained high 
precisions 

 Various extensions of Skyrme forces: additional momentum dependences 
or density dependencies 

 Other developments:  Pionless EFT,  density matrix expansion,  
Pseudopotential Skyrme forces to 6th order, ab initio EDF
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Our refitting procedure
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23 3/  Fk a=r/d

Lee-Yang-Hung, Phys. Rev. 105, 1119 (1957).

• Only refit the momentum independent parameters:  t0, t3, t3E, leading 
regularization terms for saturation properties

• Induced three body and many-body forces are huge in the soft Skyrme force, and a 
single term may not be sufficient for various systems from dilute halos to high 
density neutron stars

• Using simulated annealing method, fitting binding energies of 50 nuclei and charge 
radii of 8 spherical nuclei

Q

With an additional higher-order density dependent terms



Binding energies

rms=4.3 MeV

rms=2.9 MeV

rms=2.3 MeV

rms=1.51 MeV

rms=1.29 MeV

• Calculations of 603 even-even nuclei, reduce the rms by 10~20%
• In light nuclei, binding energies of N=Z nuclei are underestimated

(M. Stoitsov, et al. PRL 98, 132502 (2007)
• In heavy nuclei, the shell effects are overestimated



Fission barriers

• Parameter sets which are good at binding energies are not good at fission barriers
• Proton-rich heavy nuclei are less binding, neutron-rich medium nuclei are over binding,

indicting conflicting isospin dependences
(surface symmetry energy, N. Nikola et al, PRC83, 034305 (2011)



EOS

• High-order density dependent term is needed for high-density EOS, neutron stars
• Increase incompressibility and pressure at high densities
• Reduce symmetry energies at high densities 

(soft symmetry energy by π−/π+ ratio , Z.G.Xiao et al, PRL 102, 062502 (2009).



Charge radii

Charge radii of 309 even nuclei
SkM*  (rms=0.023 fm) is slightly better 
than UNEDF0 (rms=0.027 fm)



CoM corrections

The two-body center of mass correction

Two-body CoM: 4.05A0.21

One-body CoM: -14.58A0.047

Total CoM: -18.33A-0.208

Two-body CoM: 4.20A0.21

One-body CoM: -14.92A0.046

Total CoM: -18.61A-0.213

The two-body com corrections is close to the surface curvature energy A1/3   

The usually missing two-body part has different mass dependence, beyond 
one-body cm optimizations

Important for surface energy and fission barriers,
Bender, et al, Eur. Phys. J. A 7, 467 (2000).



Lipkin-Nogami corrections

 Approximate restoration of the particle number conservation 

• LN corrections show shell effects 
• Lipkin-Nogami doesn’t improve the 

global binding energies significantly 

M. Samyn, et al.,
Phys. Rev. C 70, 044309 (2004).

BCS: rms =1.31
LN: rms=1.29

Angular momentum projection has not been considered presently



Perspectives 

 To develop a high-precision nuclear energy density functional for general 
purposes is a challenge 

 The high-order term can improve the descriptions of binding energies by 
10~20%; impact high-density EOS. 

 Various corrections or restorations, local fluctuations should be 
systematically studied

 Skyrme Hartree-Fock ≠ DFT

 Consider include Bayesian methods and advanced optimizations

Thank you for your attention!


