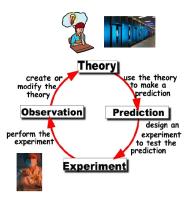
Bootstrap: a nuclear physics point of view


A. Pastore

Department of Physics, University of York, Heslington, York, YO10 5DD, UK

ISNET-5 York

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

Introduction

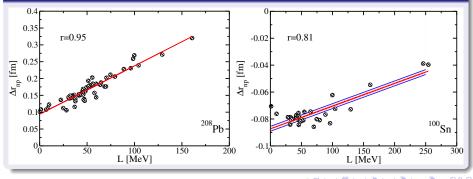
The scientific method

- A problem is identified
- Relevant data are gathered

< □ > < 同 >

- An hypothesis is formulated from the data
- The hypothesis is empirically tested

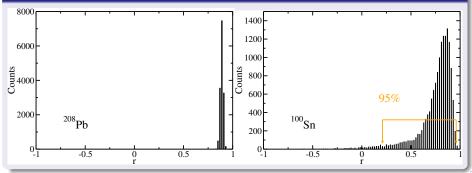
Journal of Physics G


Enhancing the interaction between nuclear experiment and theory through information and statistics (ISNET) (2015)

Α.	Pas	tore

What is Bootstrap?

- Non-Parametric Bootstrap is a statistical method introduced by Efron in 1979 B. Efron and R. Tibshirani, An introduction to the bootstrap (CRC press, 1994).
- Based on resampling (with replacement) of data
- No specific assumptions on the *parent* distribution
- Possible extension: parametric Bootsrap


Bootstrap @ work!

• We build BB new data sets with n points (as original) by resampling

$$\left(\begin{array}{c}2n-1\\n\end{array}\right) = \frac{(2n-1)!}{n!(n-1)!}$$

- We calculate for each data-set \hat{r}
- We build the distribution

Errors on \hat{r} : confidence interval 68% quantile.

Bootsrap fit

- Possible alternative ot χ^2
- Bootsrap of residuals $y = f(\vec{a}, x) + \varepsilon$ (4000 samples)
- Creation of new data sets $y^* = y + \varepsilon^*$
- $\bullet~$ Minimisation of a distance $(y^*-f(\vec{a},x))^2$ or $|y^*-f(\vec{a},x)|$

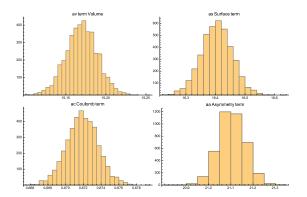
Example: Liquid-Drop model

We want to fit a linear model (as a start point!)

$$f(N,Z;av,as,ac,aa) = av - as(N+Z)^{-1/3} - ac\frac{Z^2 - Z}{(N+Z)^{4/3}} - aa\frac{(N-Z)^2}{(N+Z)^2}$$

We use 2236 *experimental* points. No error on the data (as a start)

MATHEMATICA results


	Estimate	Standard Error	t - Statistic	P- Value	
av	15.1697	0.0197484	768.15	1.35875104398	×10 ⁻²⁸⁰⁶
as	16.4042	0.0525803	311.985	4.85895485094	×10 ⁻¹⁹⁰⁴
ac	0.671887	0.00180058	373.151	8.83790086779	×10 ⁻²⁰⁸²
aa	21.1048	0.0608933	346,586	2.61381401095	×10 ⁻²⁰⁰⁸

We also obtain the covariance matrix

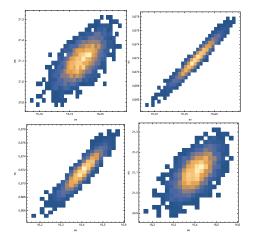
$$\left(\begin{array}{ccccc} av & as & ac & aa \\ 1 & 0.981 & 0.970 & 0.654 \\ & 1 & 0.921 & 0.590 \\ & & 1 & 0.588 \\ & & & 1 \end{array}\right)$$

We use these results to benchmark the Bootstrap. We fix the residual ε for the best fit.

Bootsrap to assess errors (Gaussian here)

Comparing values

The mean values are av = 15.1699; as = 16.404; ac = 0.672; aa = 21.104.


The differences with MATHEMATICA: $\delta \approx 0.0003/4$

Α.	Pa	s	to	re

-

< 17 ▶

Bootsrap to assess correlations

Bootsrap distribution

We have access to the distribution of the parameters around the minimum!

A.Pastore

Bootstrap

6th November 2017 8 / 9

Conclusions

Bootsrap is a very simple tool

- Simple to implement
- We have used at moment only on error analysis
- Need more CPU than χ^2 , but more informations

Possible ideas

- Bootsrap to go beyond parabolic approximations
- $\bullet\,$ Tool to avoid derivative perform numerical derivatives of χ^2
- Possible to assess non-Gaussian errors

THANK YOU!!!