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Energy Density Functionals 

✔ the nuclear many-body problem is effectively mapped onto a one-body problem without 
explicitly involving inter-particle interactions

✔ the exact density functional is approximated with powers and gradients of ground-
state densities and currents

✔ universal density functionals can be applied to all nuclei throughout the cahrt of 
nuclides!

✔ EDF parameters (≈10) are adjusted to describe properties (e.g. binding energies, charge 
radii...) of a selected set of nuclei !

✔ wide range of applications (ground state properties, spectroscopic properties, giant 
resonances, fission...) !



Relativistic energy density functionals: 

The elementary building blocks are two-fermion terms of the general type: 

... isoscalar and isovector four-currents and scalar densities: 

                         is the nuclear ground state. 



Energy density functional: 

Kinetic energy term: 

Second order terms: 
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Derivative term: 

Pairing contribution: 
finite-range separable pairing 
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Binding energies used to adjust the parameters of the DD-PC1 functional  



… energy density functional DD-PC1⇒ is it “predictive” ? Agreement with experiment?   
 
… functional form of the density dependence   ⇒ is it “sloppy”? Large parameter  

                                                                      uncertainties when fit to data? 



Least-square fit to the data 

…N data points and the model depends on F dimensionless parameters.  

…maximizing the log-likelihood corresponds to minimizing the cost function χ2(p):  

➟ the best model: minimum of χ2 on the model  
manifold (manifold of predictions embedded in  
the data space)  

In the quadratic approximation of the cost function χ2 around the best-fit point:  

➟ the residuals: 



The symmetric Hessian matrix of second derivatives: 

Diagonalization ⇒ 

Stiff direction ⟹ large eigenvalue λ, χ2 rapidly worsens away from minimum, the fit  
places a stringent constraint on this particular linear combination of parameters. 

Soft direction ⟹ small eigenvalue λ, little deterioration in χ2.  The corresponding 
eigenvector ξ involves a particular linear combination of model parameters that is 
not constrained by the observables included in the fit. 



Model parameters define an F-dimensional Riemann manifold embedded in the  

N-dimensional data space (Euclidian metric for the data space):  

The Jacobian matrix  that relates changes in the parameters p to changes in the residuals: 

The Euclidean metric of data space induces a metric on the model manifold g = JT J. 

Close to the best-fit point the Hessian matrix can be approximated by the metric tensor: 



Model manifolds of nonlinear sloppy models have boundaries that can be analysed using 
geodesics. The geodesic curve in parameter space corresponds to a curve on the model 
manifold. The arc length of geodesics on the manifold are a measure of the manifold width 
in each direction. 

The parameters corresponding to a geodesic path can be found as the solution of  

the differential equation:  

➔ initial value problem in  
the parameter space. 

with the connection coefficients: 

The boundary of the manifold is identified by the metric tensor becoming singular.  



Manifold Boundary Approximation Method  

Transtrum et al., PRL 104, 060201 (2010) 

     PRL 113, 098701 (2014) 

J. Chem. Phys. 143, 010901 (2015) 

1.  Given a model and a set of parameters, determine the best-fit model, 
calculate the Hessian and identify the eigendirection with smallest 
eigenvalue.   

 
2.  Integrate the geodesic equation using the best-fit parameter values and 

the eigendirection with smallest eigenvalue as initial conditions, until the 
boundary of the model manifold is reached.  

 
3.  Evaluate the limit associated with this boundary to produce a new model 

with one less parameters.  
 
4.  Optimise the new model by a least-square fit to the data, and use it as a 

starting point for the next iteration. 



Density dependence of the couplings: 

Symmetric nuclear matter EoS:  Akmal, Pandharipande & Ravenhall, Phys. Rev. C 58 

Can the parameters of such a density functional form be completely  
determined by a microscopic nuclear matter EoS?  

Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



Sloppy models are characterised  
by an exponential distribution of  
eigenvalues of the Hessian matrix  
→ exponential sensitivity to  
parameter combinations! 

Eigenvectors and  
eigenvalues of  
the Hessian matrix  
ℳ of second  
derivatives of χ2(p) ➟ 

Least-squares fit of the  
EDF parameters to  
the APR microscopic  
EoS of symmetric nuclear  
matter.  

…empty and filled bars ⇒ the 
corresponding amplitudes 
contribute with opposite signs. 

Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



Evolution of the seven parameters of the isoscalar part 
of the functional defined as functions of the affine 
parametrisation, along the geodesic path determined 
by the eigenvector of the Hessian matrix that 
corresponds to the smallest eigenvalue. 

The initial (best-fit point) and final (at the boundary of the model 
manifold) eigenspectrum of the FIM, and the initial and final 
eigenvectors that correspond to the smallest eigenvalues. 

First iteration: 
Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



The initial (best-fit point) and final (at the boundary of the model manifold) density-dependent isoscalar 
coupling functions, and the corresponding initial and final EoS curves.  

Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



Second iteration: 

The parameters are refitted  
to data! 

Eigenvectors and  
eigenvalues of  
the Hessian matrix  
ℳ  at the best-fit point ➟ 

Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



The initial (best-fit point) and final (at the boundary of the model manifold) density-dependent isoscalar 
coupling functions, and the corresponding initial and final EoS curves.  

Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



The parameters are refitted  
to data! 

Eigenvectors and  
eigenvalues of  
the Hessian matrix  
ℳ  at the best-fit point ➟ 

Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



etc. ⇒ Walecka model, but not  
possible to get any agreement  
with experimental binding energies 
of finite nuclei! 

Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



Widths of the model manifold of the EDF  in the directions of the eigenvectors of  the 
Hessian matrix at p0, compared to the square-roots of the corresponding eigenvalues. 

The widths of sloppy model manifolds are exponentially distributed ➔ hyperribbon. 

Phys. Rev. C 95, 054304 (2017) 
Phys. Rev. C 94, 024333 (2016) 



Density dependence of the 
 couplings: 

NM & finite nuclei: set of 8 spherical nuclei  
(16O, 48Ca, 72Ni, 90Zr, 116Sn, 132Sn, 208Pb, 214Pb – B.E., 
rch, rn-rp) 

Derivative term: �s
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First iteration: 
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Second iteration: 
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Summary and outlook 

Nuclear energy density functionals are sloppy: complex models that can be adjusted  
to data but are only sensitive to a few stiff parameter combinations, while displaying  
an exponential decrease of sensitivity to variations of soft parameter combinations.  

The exponential distribution of model manifold widths in the directions of the eigen-
vectors of the Hessian is nearly identical to the distribution of the square roots of the 
corresponding eigenvalues (sensitivity).  

A sloppy multi-parameter model can still be used to make predictions, but its sloppiness 
really points to an underlying model of lower effective dimension associated with the 
stiff parameters.  

The Manifold Boundary Approximation Method (MBAM)  can be used to  remove the 
irrelevant parameters and construct a simpler, non-sloppy functional of lower 
dimension. 


