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Léo Neufcourt UQ for computer models via BMA ISNET 5 November 8th 2017 1 / 29



Introduction

Message : competition between several models induces an additional uncertainty

Uncertainty decomposition

σ2
prediction = σ2

intrinsic + σ2
systematic + σ2

calibration + σ2
model

UQ for (expensive) computer models via Bayesian calibration

Accounting for uncertainty on the model with Bayesian model averaging : a

proof of concept

Leading example : Gamow shell model
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Physical system

Physical system (general)

yi = y(xi ) + εi

(xi , yi )
n
i=1 : input and output observations

x 7→ y(x) : physical process (signal)

εi
i.i.d.∼ N (0, σε) : intrinsic randomness + experimental error
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Computer model

Computer model : (x , θ) 7→ f (x , θ)

y(x) = f (x , θ∗) + δ(x)

θ∗ : “true” parameter value, i.e. f (x , θ∗) is the true average of all possible

observations

δ(x) : systematic error

Reference : Kennedy & O’Hagan, Bayesian calibration of computer models

(2003)
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Notations

Figure: Observations, true process and computer model
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Black box calibration

min
θ
χ2(θ) :=

n∑
i=1

wi (yi − f (xi , θ))2

calibrated parameter : θ0

optimal value : f (x , θ0)

Jacobian : J0(x) := ∇θf (x , θ0)

Hessian H0(x) := Hθ(f )(x , θ0)

Computational cost : cheap vs expensive computer model

→ computation time of f (x , θ) : if computing f (x , θ) takes 1 min and θ has

dimension d , evaluating of f (x , θ) on a grid with 100 points per parameter takes

∼ 102d mins
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Bayesian setup

Inference model : yi = f (x , θ) + δ(x) + εi

Simplification : σei ← εi + δ(xi ), ei
i.i.d.∼ N (0, 1) (e.g. εi � δ(xi ))

yi := f (xi , θ) + σei

Gaussian process(GP)

f (x , θ) ∼ GP(m(x , θ),V ((x , θ), (x ′, θ′))

m(x , θ) := h(x , θ)Tβ

V ((x , θ), (x ′, θ′)) = exp
(
(xT , θT )Ω(x ′, θ′)T

)
Hyperparameters : Ω (concentration matrix) and β (regression coefficients)

Bayesian calibration problem : estimate θ and σ

Linearization around the black box optimum :

f (x , θ) = f (x , θ0) + J0(x)T (θ − θ0) + γ(x , θ)

m(x , θ) := f (x , θ0) + J0(x)T (θ − θ0)
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Bayesian calibration

Bayes formula :

p(θ, σ|y) =
p(y |θ, σ)π(θ, σ)∫

p(y |θ, σ)π(θ, σ)dθdσ
∝ p(y |θ, σ)π(θ, σ)

Prior distributions : (ρ, a0, b0, Ω are hyperparameters)

θ ∼ N (θ0, ρ · (H0)−1)

σ2 ∼ IG (a0, b0)

Posterior distributions :

p(y |θ, σ) : likelihood (model)

π(θ, σ) : prior

p(∆|y) ∝ p(y |∆)π(∆) ∝
∫

p(∆|θ, σ)p(y |θ, σ)π(θ, σ)dθdσ
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Simulated calibration of the Gamow shell model

(a) θ (calibration parameters)

(b) σ (systematic uncertainty)

Figure: Metropolis samples from the posterior distributions (100,000 Monte Carlo
iterations)
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Decomposition of prediction error

Prediction of the observation ynew of a new input xnew :

ynew − f (xnew , θ)

= (ynew − y(xnew )) + (y(xnew )− f (xnew , θ
∗)) + (f (xnew , θ

∗)− f (xnew , θ))

= εnew + δ(xnew ) + ξ(xnew , θ)

3 sources of error : intrinsic + systematic + calibration

Systematic and calibration errors may not be independent, still as a rule of thumb

σ2
pred = σ2

intrinsic + σ2
systematic + σ2

calibration = σ2
ε + σ2

δ + σ2
ξ
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Bayesian decomposition of uncertainty

Consider the posterior distribution p(∆|y) of a general quantity ∆, e.g. ∆ := ynew

Var [∆|y ] = E[Var(∆|y , θ)|y ] + Var [E(∆|y , θ)|y ]

Var [E(∆|y , θ)|y ] → parameter uncertainty

E[Var(∆|y , θ)|y ] → the rest = intrinsic randomness + experimental

uncertainty + systematic uncertainty

Computer model : ynew = f (xnew , θ) + σenew

calibration uncertainty : Var [f (xnew , θ)|y ]

systematic uncertainty : E[σ2|y ]
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Accounting for uncertainty on the model

Suppose that p models are available and that the true model is given by a random

variable M. We have :

Var [∆|y ] = E[Var(∆|y ,M)|y ] + Var [E(∆|y ,M)|y ]

Var [E(∆|y ,M)|y ] → uncertainty on the model

Accounting for uncertainty on the model can be done via model averaging
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Setup

Consider the same data
(
xi , yi

)n
i=1

and p computer models

(x , θk) 7→ fk(x , θk), k = 1, . . . , p.

Simplified Bayesian models:

yi = fk(xi , θk) + σkei , i = 1, . . . , n (Mk)

where

xi is a deterministic input

yi is the observed output

fk(xi , θk) is the output of the k th computer model

θk and σk are parameters

ei
i.i.d.∼ N (0, 1)
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Bayesian Model Averaging (BMA)

Axiom : when several models are available, an “honest” prediction should be

given by an average model

ŷa(xi ) :=
∑
k

1M=k(fk(xi , θk) + σkei )

where pk := p(M = k) represents our subjective belief in model k.

Posteriors distributions of the Bayesian average model :

p(∆|y) =
∑
k

pkp(∆|y ,M = k)

where pk := p(M = k|y) ∝ π(M = k)
∫
p(y |θ, σ,M = k)π(θ, σ)dθdσ
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Bayesian uncertainty on the model

BMA prediction : E[yBMA
new |y ] =

∑
k pkE[fk(xnew , θ)|y ]

BMA prediction uncertainty :

Var [ynew |y ] =
∑

k pkVar [ynew |y ,M = k] + Var [E(ynew |y ,M)|y ]

Uncertainty on the model :

σ2
model := (σBMA

prediction)2 −
∑

k pk(σk
systematic)2 −

∑
k pk(σk

calibration)2
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Bayesian average of two computer models

→ Gamow shell model example

fA(x , θ) = f (x , θ0) + zA(x)T (θ − θ0) + γ(x , θ) (good calibration)

fB(x , θ) = f (x , θ̃0) + zB(x)T (θ − θ̃0) + γ(x , θ) (bad calibration)

θ̃0 : distortion of θ0, with (θ̃0 − θ0) ∼ 1%

γ(x , θ) : GP with mean 0

model prior posterior

A 0.5 0.9997

B 0.5 0.0003

Table: Posterior probabilities of models A and B
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Gamow shell model simulation : Model 1 vs BMA

(a) Model A (b) BMA (Bayesian average model)

Figure: Posterior distributions of the calibration parameters
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Gamow shell model simulation : Model 2 vs BMA

(a) Model B (b) BMA (Bayesian average model)

Figure: Posterior distributions of the calibration parameters
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Gamow shell model simulation : systematic uncertainties

(a) Model A (b) Model B

(c) BMA (Bayesian average model)

Figure: Posterior distributions of the systematic uncertainty

Léo Neufcourt UQ for computer models via BMA ISNET 5 November 8th 2017 23 / 29



Uncertainty analysis

error (σ)

model prediction systematic calibration

A 3.522 1.419 3.224

B 6.489 1.743 6.251

BMA 3.524 1.420 3.22

Table: Uncertainty decomposition of models A, B and BMA

σmodel = 0.061
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Shrinkage of the distortion

BMA often selects one model

example with comparable model posteriors : (θ̃0 − θ0) ∼ 0.01%

model prior posterior

A 0.5 0.553

B 0.5 0.447

Table: Posterior probabilities of models A and B

σmodel = 0.11

Léo Neufcourt UQ for computer models via BMA ISNET 5 November 8th 2017 25 / 29



Statistical challenges

Bayesian calibration :

calibration of Black box emulator for expensive computer models

improve Metropolis sampling

convergence of Bayesian estimators

systematic choice of prior

Model averaging : computing the evidence integral (Bayes factor)∫
θ,σ

p(y |θ, σ)π(θ, σ)dθdσ
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Computing the evidence integral for a (very) good model

Figure: Monte Carlo estimation of an evidence integral (50 data), with (right) or without
(left) importance sampling. (a) and (b) show the estimations for an increasing number
of iterations. (b) and (c) show the distributions of the same samples. (e) and (f) give
the distribution of 150 Monte Carlo estimates with 10,000 iterations

Laplace MC MC - IS (Gibbs)

1.90e-20 5.08e-19 1.32e-19 (7.91e-17)

Table: Evaluation of the evidence integral
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Comparison of evidence integrals

Figure: Distribution of Monte Carlo samples estimating the evidence integrals for A (left)
and B (right), with (bottom) or without (top) importance sampling
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Thank you!

neufcour@frib.msu.edu
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