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0.3 − i0.1 fm−1, kmiddle=0.6 fm−1 and kmax=2.0
fm−1 for L+

d5/2
, and kmin=0.0, kpeak = 0.25 − i0.1

fm−1, kmiddle=0.5 fm−1 and kmax=2.0 fm−1 for
L+
s1/2

. Each segment is discretized with 10 points.
The states along each contour are generated by the
same WS potential. The p1/2 continuum is approx-
imated by 5 lowest harmonic oscillator (HO) wave
functions. Similarly, the p3/2 and d3/2 continua are
approximated by 5 and 6 HO states, respectively.
To reduce the size of the GSM matrix, the basis of
Slater determinants is truncated by limiting to 2 the
number of nucleons in the non-resonant continuum
states.

Antisymmetric eigenstates of the GSM-CC have
been expanded in the basis of channel states which
are built by coupling the GSM wave functions for
ground state 0+1 and excited states 1−1 , 0+2 , 3−1 , 2

+
1 ,

0−1 , 2
+
2 , 2

−

1 of 14O with the proton wave functions
in partial waves: s1/2, p1/2, p3/2, d3/2, and d5/2.
The WS potential is fitted to reproduce the level
scheme of 13N.

The two-body part of the FHT interaction from
which the microscopic channel-channel coupling po-
tentials are calculated, has been rescaled by the
multiplicative factors 1.07, 0.96 and 0.95 for 1/2+1 ,

5/2+1 and 1/2−1 states of 15F, respectively, to com-
pensate for neglected channels built from higher ly-
ing resonances and non-resonant continuum states
of 14O.

The calculated binding energies in 15F are:
(E,Γ)(GSM−CC) = (−8.29 MeV, 0.437 MeV),
(−6.66 MeV, 0.211 MeV), and
(−4.48 MeV, 0.031 MeV) for 1/2+1 , 5/2

+
1

and 1/2−1 states, respectively. All ener-
gies are given relative to the energy of
12C. In the same scale, experimental values
are: (E,Γ)(exp) = (−8.21 MeV, 0.376 MeV),
(−6.57 MeV, 0.305 MeV), and
(−4.48 MeV, 0.036 MeV). We have checked
consistency between the eigenvalues calculated
either in the Slater determinant representation
(GSM), or in the coupled channel representation
(GSM-CC) of the many-body wave functions
of 15F. Calculated one- and two-proton separa-
tion energies in 15F reproduce the experimental
separation energies.

The narrow resonance 1/2−1 can decay either by
1p- or 2p-emission. The GSM wave function for
this state:

< Ψ|0p1/2[1]s1/2[2] >
2 = 0.97 (1)
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Figure 3: (Color online) The GSM-CC excitation function of
the reaction 14O(p,p)14O at 180◦ in the c.m. as calculated
in the GSM-CC approach. The excitation function around
the 1/2−

1
resonance is shown in the insert.

< Ψ|0p1/2[1]0d5/2[2] >
2 = 0.02

is an almost pure wave function of 2 protons in s1/2
resonant and non-resonant shells.
Even if the spectroscopic factors are model de-

pendent, their values within a given theoretical
framework provide an useful insight into the struc-
ture of the wave functions. For 1/2+1 state, the
largest one-proton spectroscopic factor is to the

ground state of 14O (S(1/2+)
SF = 0.945). Simi-

larly for 5/2+1 state, the largest spectroscopic factor

(S(5/2+)
SF = 0.93) is also to the ground state of 14O.

On the contrary, the largest spectroscopic factors
for the 1/2−1 state are to the first and second excited
states 1−1 and 0+2 of 14O, whereas the spectroscopic

factor to the ground state is only S(1/2−)
SF = 0.0035.

The GSM-CC excitation function for the reaction
14O(p,p)14O at 180◦ in the c.m. is shown in Fig.
3. The overall agreement with the experimental
results of this work is good though the calculated
cross sections above the 5/2+1 resonances are lower
than seen in the data.

6. Discussion

It is tempting to compare a pattern of the reso-
nances in N = Z nucleus (8Be) and in N < Z nu-
cleus (15F). Obviously, the sequence of decay chan-
nels in 8Be and 15F is quite different. Nevertheless,
in both nuclei one finds resonances in the vicinity of
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on the model space. Moreover, one is bound to use the same
WS basis for all nuclei, as the SDI interaction cannot practi-
cally be used to generate the HF potential. Consequently, as
the chosen WS basis is not an optimal s.p. basis (HF basis
is), one cannot easily truncate the configuration space when
the number of valence particles increases [3]. So, we have
decided to introduce a new two-body residual interaction, the
Surface Gaussian Interaction (SGI):

V
J,T

(~r1, ~r2) = V0(J, T ) · exp

"
°

µ
~r1 ° ~r2

µ

∂2
#

·±(|~r1| + |~r2|° 2 · R0), (1)

which is used together with the WS potential with the “5He”
parameter set.

The SGI interaction is a compromise between the SDI
and the Gaussian interaction. The parameter R0 in Eq. (1)
is the radius of the WS potential, and V0(J, T ) is the cou-
pling constant which explicitly depends on the total angular
momentum J and and the total isospin T of the pair of nucle-
ons. A principal advantage of the SGI is that it is finite-range,
so no energy cutoff is needed. Moreover, the surface delta
term in (1) simplifies the calculation of two-body matrix ele-
ments, because the radial integrals become one-dimensional
and they extend from r=0 to r=2R0. (In the Gaussian case,
such as the Gogny force, they are two-dimensional and have
to be extended to infinity.) Consequently, an adjustment of
the Hamiltonian parameters becomes feasible. Finally, the
resulting spherical HF potential is continuous and can be cal-
culated very accurately. This allows one to use the optimal
spherical HF potential for the generation of the Berggren ba-
sis for each nucleus studied; hence a more efficient truncation
in the space of configurations with a different number of par-
ticles in the non-resonant continuum. In the present study, it
turned out to be sufficient to consider at most two particles in
the GHF continuum. This restriction on the number of parti-
cles in the non-resonant continuum allowed us to extend the
studies up to unbound 10He and the halo nucleus 11Li.

2.1. Choice of the valence space

In our He and Li calculations, the valence space for protons
and neutrons consists of 0p3/2 and 0p1/2 spherical GHF res-
onant states, calculated for each nucleus, and the {ip3/2} and
{ip1/2} (i = 1, . . . , M) complex continua generated by the
same potential. These continua extend from Re[k] = 0 to
Re[k] = 8 fm°1 and they are discretized with 14 points
(i.e., M = 14). Altogether, we have 15 p3/2 and 15 p1/2

GHF states (shells) in the GSM calculation. The imaginary
parts of k-values of the discretized continua are chosen to
minimize the error made in calculating the imaginary parts
of energies of the many-body states. Other continua, such
as s1/2, d5/2,. . . are neglected, as they can be chosen to
be real and would only induce a renormalization of the two-
body interaction. We have checked [2, 3] that their influence
on the binding energy of light helium isotopes is negligible.

On the other hand, the 1s1/2 anti-bound neutron s.p. state is
important in the heaviest Li isotopes (10Li, 11Li) and plays
a significant role in explaining the halo ground-state (g.s.)
configuration of 11Li [7, 8]. At present, however, solving a
GSM problem for 11Li in [0p3/2, {ip3/2}; 0p1/2, {ip1/2};
1s1/2, {is1/2}; (i = 1, . . . ,M)] GHF space is not possible
within a reasonable computing time. This task will be, how-
ever, possible in the near future by using a new generation
GSM code which employs the DMRG methods to include
the non-resonant continuum configurations contribution in
the many-body wave function [9, 10].

Having defined a discretized GHF basis, one constructs
the Slater determinants from all s.p. basis states (bound, reso-
nant, and non-resonant), keeping only those with at most two
particles in the non-resonant continuum. Indeed, as the two-
body Hamiltonian is diagonalized in its optimal GHF basis,
the weight of configurations involving more than two par-
ticles in the continuum is usually quite small, and they are
neglected in the following.

2.2. The Helium chain

Within the chain of helium isotopes, which are described
assuming an inert 4He core, there are only T=1 two-
body matrix elements. Consequently, only (J=0, T=1)

and (J=2, T=1) couplings come into play. We have ad-
justed V0(J=0, T=1) to reproduce the experimental g.s.
energy of 6He relative to the g.s. of 4He, whereas
V0(J=2, T=1) has been fitted to all g.s. energies from 7He
to 10He. Indeed, these latter states are mainly sensitive to
V0(J=2, T=1) whereas, for obvious geometrical reasons,
the J=2, T=1 coupling is absent in the g.s. of 6He. The
adopted values are: V0(J=0, T=1)=° 403MeV fm3 and
V0(J=2, T=1)=° 315MeV fm3.

The calculated spectrum of He isotopes is shown in
Fig. 1. The experimental g.s. binding energies relative to

FIGURE 1. GSM spectra of helium isotopes obtained with the SGI
Hamiltonian. Experimental data are taken from Refs. [11–14].
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Quantified Gamow Shell Model interaction 
for psd-shell nuclei

We have optimized an effective N+NN potential within the 
Gamow Shell Model (GSM) framework, designed to describe a variety of 

structure (bound + unbound) and reaction observables across  
the psd-shell nuclei (A ≃ 5 - 15)  

Statistical studies have been carried out to assess statistical  
uncertainties and correlations between parameters and/or  

predicted observables 
?

GSM-CC 14O(p,p’) excitation function 

 10Li experimental 
spectrum GSM spectra of Helium isotopes 

obtained with a simple interaction  
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1. The framework 
๏ The Gamow Shell Model 
๏ Optimization and Uncertainty Quantification 

2. The quantified GSM effective interaction 
๏ The core potential 
๏ The NN interaction  

3. Applications  
๏ A=7 nuclei  
๏ Helium spectra  

4. Conclusions 
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s‣ Open-quantum system extension of the 
traditional Shell Model 

‣ Both correlations and continuum effects are 
treated on the same footing (Berggren ensemble) 

‣ GSM-Cluster orbital shell model (COSM)  
Hamiltonian:

The Framework: The Gamow Shell Model

‣ Translational invariance 
‣ Exact treatment of the Coulomb interaction

T. Berggren, Nucl. Phys. A 109, 265 (1968)

N. Michel, W. Nazarewicz, M. Płoszajczak, T. Vertse,  
J. Phys. G: Nucl. Part. Phys. 36, 013101 (2009)

H =
NvX

i=1


~p2i
2µi

+ U(i)

�
+

NvX

i<j=1


Vres(i, j) +

~pi · ~pj
Mc

�

X

|uni2b,r

|unihũn|+
Z

L+

|ukihũk|dk = 1
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Decaying states



       Core (4He)

     Valence  
     space

0s1/2

0p3/2

0p1/2

0f7/2
1p3/2

0f5/2
1p1/2

s-p-d-f s-p-d-f

Protons Neutrons

‣ Effective finite-range NN potential 
• Gaussian-like with central + spin-orbit + tensor + Coulomb channels  
• Based on  H. Furutani, H. Horiuchi, and R. Tamagaki, Prog. Theor. Phys. 62, 981 (1979) 
• 7 parameters adjusted to the He, Li, Be chain ground-state energies + chosen excited states  

‣ The calculations were made possible by the hybrid parallelization of the GSM code

‣ 4He core modeled by a  
  Woods-Saxon + spin-orbit + Coulomb 

‣ Configuration space: psdf 
• 0p3/2, 0p1/2 and/or 1s1/2, 0d5/2 resonances 
• s, p, d and f scattering continua, kmax = 2.0 fm-1

The Interaction

Protons Neutrons
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‣ Chi-square minimization 

‣ Part of the arbitrariness of the adopted errors is removed by requiring that 

      at the minimum p0 (similarly to the case of a purely statistical distribution). 

‣ In the case of a single type of data (and negligible experimental + numerical errors): 
⇒  Global scaling of the adopted errors (One single Birge factor)

5

�2(p) =
NdX

i=1

✓Oi(p)�Oexp

i

�Oi

◆2
J. Dobaczewski, W. Nazarewicz, P.-G. Reinhard,  
J. Phys. G: Nucl. and Part. Phys. 41, 074001 (2014)

�2(p0)

N
dof

$ 1

The Optimization
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‣ The minimization were performed using the Gauss-Newton algorithm augmented by the 
Singular Value Decomposition (SVD) technique: 

‣ Gauss-Newton method (for the overdetermined case Ndata > Nparam) 

‣ Singular Value Decomposition (SVD): Moore-Penrose pseudoinverse to deal with 
sloppy parameters: 

⇒  MX = B is solved in a restricted subspace of the space image of M.

6

The Optimization
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P(s+1) = P(s) �
⇣
JT
(s)J(s)

⌘�1
JT
(s)F(s)

s : step 
P : parameter-vector 
J : Jacobian 
F : residual vector

M�1 = PD�1P�1 ! M�1
MP = PD�1

MPP
�1



‣ Covariance matrix (linear regression) 
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C = (JTJ)�1 , Ji↵ =
1

�Oi

@Oi

@p↵

����
p0

Uncertainties 
on parameters

Uncertainties 
on observables

Correlation coefficients  
between physical quantities

�A
2
=

NpX

↵,�=1

@A

@p↵

����
p0

C↵�
@A

@p�

����
p0

�p↵ =
p

C↵↵
�A�B =

NpX

↵,�=1

@A
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p0

C↵�
@B

@p�

����
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The Statistical Uncertainty Quantification

Uncertainties as in  
‘reasonable domain’  
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Ep3/2 = 1.627 MeV (Exp = 1.690) 
Γp3/2 = 1.351 MeV (Exp = 1.230)
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s1/2
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p+α

The Core Potential

Particle R0 [fm] a [fm] V0 [MeV] Vso [MeV fm2] Rch [fm]

neutron 2.15 ± 0.04 0.63 ± 0.02 41.9 ± 1.0 7.21 ± 0.20

proton 2.06 ± 0.04 0.64 ± 0.02 44.4 ± 1.1 7.24 ± 0.21 1.681

n\p R0 a V0 Vso

R0 ● -0.81 -0.94 -0.78

a -0.75 ● 0.59 0.81
V0 -0.95 0.51 ● 0.62

Vso -0.75 0.84 0.55 ●

Correlation coefficients 
(Normalized covariance matrix)

‣ The Woods-Saxon + spin-orbit + Coulomb was 
adjusted to N-4He phase shifts up to Ecm = 20 MeV
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The zeroth order NN potential

9

• 4 nucleons in the continuum (converged calculations) 
• Could be used with other models (DMRG) 
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The calculations were performed in the psdf�configuration
space. The 0p3/2, 0p1/2 resonant states and the associated
scattering continua were used as the Berggren basis for both
protons and neutrons, as well as the 1s1/2 and 0d5/2 resonant
states and the associated continua for neutrons to account for
possible antibound shells and excited states of different parity.

As stated in Sec. II A, the basis potential that generates the
Berggren basis was adapted for each nucleus. Consequently,
the scattering continua were also chosen differently for all nu-
clei depending on the nature of the 0p3/2, 0p1/2, 1s1/2, and
0d5/2 Gamow poles. For example, in the cases in which the
considered pole and the desired many-body state were bound,
the contour consisted of three segments on the real axis of
the momentum plane defined by the points kpeak = (0.1, 0.0)
fm�1, kmid = (0.2, 0.0) fm�1, and kmax = (2.0, 0.0) fm�1.
In the case of unbound s.p. pole, kpeak and kmid were moved
into the complex momentum plane to encompass the reso-
nant state. Finally, in the special case of 7He, for which
the 0p3/2 pole is bound but the many-body state is un-
bound, the corresponding contour was defined by the points
kpeak = (0.25,�0.24) fm�1, kmid = (0.5, 0.0) fm�1, and
kmax = (2.0, 0.0) fm�1 to generate a many-body configura-
tion space which can describe an unbound many-body state.
In all cases, the three segments were discretized with at least
10 Gauss-Legendre points. It is worth noting that the detailed
choice of the contour should not influence the results, pro-
vided that the key Gamow poles are encompassed by the scat-
tering contour.

The remaining higher-` partial waves can be quite well de-
scribed using a HO basis [71]. For that matter, and to re-
duce the size of the model space, the remaining s, d and
f partial waves were spanned by a HO basis with 11 shells
(nHO

max = 10). In this mixed basis, the natural orbitals were
generated as discussed in Sec. II A. The final model space
in which the calculations with the natural orbitals were per-
formed, allows at most four particles in the scattering contin-
uum.

The two-body interaction was optimized to the experimen-
tal binding energies of the ground states and a few selected
excited states of the helium, lithium, and beryllium isotopes
shown in Table V. The binding energies span a large range
from approximately �30 MeV to +2 MeV, and different types
of states are involved: bound states, resonances, and halo
states (ground state of 6He). The 1/2+ state of 9Be has been
chosen to probe the s1/2 shell.

The optimization yielded a �2 minimum with a precision
kr�2k/Ndof ⇠ 10

�4 limited by the SVD cutoff value (see
below). We restarted the optimization using different points
in the parameter space to assure that the robust solution has
been found. The optimized interaction parameters are listed
in Table VI together with the associated uncertainties.

As some parameters are weakly constrained by the current
dataset, the SVD procedure played an important part in our
optimization. To account for their different units and orders
of magnitude, the parameters were normalized to the value of
one during the SVD procedure, that is p↵ ! p̃↵ = 1, Ji↵ !
˜Ji↵ = p↵Ji↵. Table VII lists the singular values (square roots
of the eigenvalues of the Hessian matrix ˜JT

˜J) at the minimum

TABLE V. Binding energies (relative to 4He; in MeV) and widths (in
keV) of the selected states of A = 6 � 9 nuclei used in this work
to optimize the two-body GSM interaction. The experimental values
are taken from Ref. [70]. The theoretical values were obtained using
the interaction parameters of Table VI. Note that the widths of the
listed unbound states did not enter the optimization procedure, i.e.,
those represent genuine predictions.

Nucleus State E Eexp � �exp
6He 0+ �1.063 �0.973
6He 2+ 0.938 0.824 168 113(20)
7He 3/2� �0.578 �0.528 178 150(20)
8He 0+ �3.225 �3.112
6Li 1+ �3.724 �3.699
6Li 0+ �0.054 �0.136
7Li 3/2� �10.688 �10.949
7Li 1/2� �10.359 �10.471
8Li 2+ �13.350 �12.982
9Li 3/2� �16.677 �17.046
6Be 0+ 1.390 1.371 21 92(6)
7Be 3/2� �8.977 �9.305
8Be 0+ �28.572 �28.204 0 0.0056(3)
9Be 3/2� �30.230 �29.870
9Be 1/2+ �27.747 �28.186 0 217(10)

TABLE VI. Optimized parameters of the two-body interaction (8-10)
together with their statistical uncertainties.

Parameter Value

V 11
c (MeV) �3.2 (220)

V 10
c (MeV) �5.1 (10)

V 00
c (MeV) �21.3 (66)

V 01
c (MeV) �5.6 (5)

V 11
LS (MeV) �540 (1240)

V 11
T (MeV fm�2) �12.1 (795)

V 10
T (MeV fm�2) �14.2 (71)

together with the corresponding eigenvectors.
The eigenvectors associated with large singular values de-

fine the directions along which the penalty function exhibits
the largest variations. Following SVD, the parameter space
is reduced to a smaller (relevant) space defined by the singu-
lar values greater than a given cutoff value smin. In the case
considered, a large value of smin = 1 was needed for the opti-
mization procedure to converge, reducing the parameter space
to four main directions. Table VII also shows that the two
central-potential parameters V 10

c and V 01
c are the two param-

eters which primarily govern the optimization, as well as V 00
c

V 10
T to a lesser extent. The three (ST ) = (11) parameters are

poorly constrained by the experimental dataset chosen. More
experimental data of different kinds, such as charge and mat-
ter radii and electromagnetic moments, will be useful in the
future developments to constrain these parameters. At this
point, the freedom on the sloppy parameters can be utilized
to fine-tune the interaction to reproduce experimental reaction
thresholds.

• r.m.s. deviation of 250 keV 
• Good starting point for detailed structural and reaction 

studies



The zeroth order NN potential
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Parameter Value

central

S=1 , T=1 -3.2 ± 22.0

S=1 , T=0 -5.1 ± 1.0

S=0 , T=0 -21.3 ± 6.6

S=0 , T=1 -5.6 ± 0.5

spin-orbit S=1 , T=1 -540 ± 1240

tensor
S=1 , T=1 -12.1 ± 79.5

S=1 , T=0 -14.2 ± 7.1

Quantified GSM interaction for psd-shell nuclei N. Michel - ISNET-5 - Nov 2017

‣ Parameters ‣ Singular values (eigenvalues of the normalized  
Hessian matrix)

7

TABLE VII. Singular values sn and the corresponding eigenvectors
of the normalized Hessian matrix J̃T J̃ with respect to the parameters
at the minimum. The main components are written in boldface. The
SVD cutoff separates the relevant space generated by the eigenvalues
1-4 from the irrelevant space. The displayed values are computed at
the �2 minimum but exhibit similar pattern during the optimization
procedure.

n sn V 11
c V 10

c V 00
c V 01

c V 11
LS V 11

T V 10
T

1 243 0.00 0.82 �0.03 0.53 0.00 0.00 0.23
2 43.0 0.00 �0.49 �0.02 0.85 0.00 �0.01 �0.19
3 7.06 �0.04 �0.16 0.79 0.05 0.04 �0.07 0.58
4 3.94 0.02 �0.25 �0.61 0.01 �0.09 �0.04 0.75
5 0.57 �0.23 �0.02 �0.09 0.00 0.97 �0.01 0.04
6 0.20 0.65 �0.03 0.04 0.01 0.16 0.74 0.06
7 0.12 0.73 0.01 0.00 0.00 0.16 �0.66 �0.04

En
er

gy
 (M

eV
)

A

4He

He
chain

Be
chain

Li
chain

FIG. 3. Energies of the helium, lithium and beryllium isotopic
chains with A  9 computed using the optimized GSM interaction
with parameters given in Tables II and VI. The experimental values
shown by stars are taken from Ref. [70]. The widths of unbound
states are listed in Table V.

The results of the optimization are shown in Fig. 3 and
listed in Table V. Overall, the quality of the optimization is ex-
cellent, with a root mean square deviation (rms) of 250 keV.
The helium chain, whose energetics depends almost exclu-
sively on a single parameter V 01

c , is well described with a
rms deviation of 95 keV. The T = 0 nuclear interaction is
responsible for clusterization effects and probably demands
the inclusion of higher partial waves than ` = 3 for a bet-
ter description. This explains why the optimization slightly
deteriorates for Li and Be isotopes. In any case, an overall

agreement with experiment over such a large range of ener-
gies is quite satisfactory and makes this interaction an excel-
lent starting point for detailed structural and reaction studies.
It is also worth noting that, even if they do not enter the set of
fit-observables, the widths of the unbound states are described
fairly well in spite of the fact that they are extremely depen-
dent on the threshold energies.

The correlation coefficients (16) for the two-body interac-
tion parameters are listed in Table VIII. This table can be used
to obtain the associate covariance matrix needed to assess the
uncertainties on predicted observables. The two main interac-
tion parameters V 10

c and V 01
c are strongly anticorrelated. The

values that are related to the sloppy parameters should not be
taken too rigorously as they are computed within the linear re-
gression framework. Only a fully-consistent statistical study,
based, e.g., on Bayesian techniques, can fully assess correla-
tions related to these parameters.

TABLE VIII. Correlation coefficients between the two-body interac-
tion parameters.

V 11
c V 10

c V 00
c V 01

c V 11
LS V 11

T V 10
T

V 11
c 1 0.24 0.26 �0.44 0.63 �0.45 �0.25

V 10
c 0.24 1 �0.22 �0.92 0.01 �0.89 �0.99

V 00
c 0.26 �0.22 1 0.30 �0.21 0.38 0.21

V 01
c �0.44 �0.92 0.30 1 �0.17 0.96 0.89

V 11
LS 0.63 0.01 �0.21 �0.17 1 �0.28 �0.04

V 11
T �0.45 �0.89 0.38 0.96 �0.28 1 0.88

V 10
T �0.25 �0.99 0.21 0.89 �0.04 0.88 1

VI. FIRST APPLICATIONS

The optimized interaction presented in the previous sec-
tions sets the path for a variety of structure and reaction ap-
plications across the A ' 5 � 12 nuclei. Such applications
will be presented in forthcoming studies. In this section, we
present representative applications of the optimized interac-
tion to different structural properties.

A. Two-nucleon correlation densities in 6He and 6Li

Pairing correlations are very important in nuclei close to
the neutron drip line as they can give rise to a significant
stabilization of weakly bound nuclei through the continuum
coupling [72–76]. Two-nucleon correlations can be evalu-
ated through the correlation density [36, 77–79] ⇢NN(r, ✓) =
h |�(r1 � r)�(r2 � r)�(✓12 � ✓)| i, in which r1 and r2 are
the positions of the first and second nucleon respectively and
✓12 the opening angle between the two nucleons. Here, we
follow the normalization convention of Ref. [79] in which the
Jacobian 8⇡2r2r02 sin ✓ is incorporated into the definition of
⇢NN , i.e., it does not appear explicitly.

Figure 4 shows the calculated pair correlation densities for
the states of 6He and 6Li that entered the interaction opti-

• Four parameters completely govern the optimization! 
• The three remaining parameters are sloppy, i.e. unconstrained by the chosen set of experimental data 

• Can be constrained by experimental data of different kinds (charge/matter radii, EM moments)  
• Could be used to locally fine-tune the interaction



‣ Computed uncertainties have two components:  

‣ A=7 nuclei:  

‣ ∆EN < 0.07 MeV (small compared to ∆ENN) 
‣ Good overall agreement for the energies and the widths 
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Predictions - Energy Spectra, A=7 nuclei

State Ecalc (MeV) Eexp (MeV) Γcalc (keV) Γexp (keV)
7He, 5/2- +2.50 (2) +2.39 (9) 2250 (280) 1990 (170)
7Be, 1/2- -8.67 (45) -8.88
7B, 3/2- +3.42 (21) +3.58 (7) 740 (450) 801 (20)
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‣ 8He, 2+ :  
• Uncertainty coming from the WS: ∆EN = 0.07 MeV  
• Prediction with uncertainties does not favor any of the experimental scenario 

‣ 9He: not resolved experimentally 
• ∆EN (1/2+) = 0.13 MeV, ∆EN (1/2-) = 0.59 MeV  (s1/2 and p1/2 are less constrained in the WS) 
• Shell inversion observed (mean values)

12

Predictions - Energy Spectra, Heliums

State Ecalc (MeV) Eexp (MeV) Γcalc (keV) Γexp (keV)
8He, 2+ -0.10 (75) -0.41 / +0.49 290 (1010) 1990 (170)

9He, 1/2+ -3.12 (31) -2.93 (9)* 0 180 (160)*
9He, 1/2- -2.98 (102) -1.88 (12)* 630 (330) 130 (170)*

Quantified GSM interaction for psd-shell nuclei N. Michel - ISNET-5 - Nov 2017
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Summary and Outlook

‣ The interaction is well optimized to the ground state + some excited state energies of the He, Li and 
Be chains 

‣ The SVD analysis allowed to pinpoint the four interaction parameters which are reasonably 
constrained by the binding energies.  

‣ The remaining three parameters are sloppy; hence new data are needed to limit them. 

‣ With the covariance matrices calculated for the one and two-body potentials, we assessed 
uncertainties and correlations between physical quantities. 

‣ In collaboration with the Department of Statistics and Probability at MSU, we have initiated a 
project to perform a Bayesian study of the interaction for a fully consistent statistical analysis (see 
Léo Neufcourt’s talk this afternoon for a preliminary Bayesian study of the interaction).
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Summary and Outlook

Thank you for your 

attention!
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Back-up

3

state. This technique has been applied with success in the
contexts of Variational Multiparticle-Multihole Configuration
Mixing Method [40] and DMRG [41]. In the present study,
the approximate solution | 0i is obtained in a smaller config-
uration space in which only two particles are allowed in the
non-resonant continuum space. With the corresponding nat-
ural orbital basis, a number of 5 � 7 states per partial wave
offer results of similar quality (�E < 15 keV) as the original
30 Berggren basis states; this sometimes reduces the sizes of
the matrices by four orders of magnitude, thus making large-
space calculations tractable.

B. The GSM interaction

In this study, the light nuclei are described in terms of va-
lence nucleons outside the 4He core. As seen in Eq. (2), the
GSM interaction has two components: the one-body core-
valence potential Ucore and the two-body interaction V be-
tween the valence nucleons. The core-valence potential is
modeled, separately for protons and neutrons, by the sum of
a Woods-Saxon potential, a spin-orbit term, and a Coulomb
field:

Ucore(r) = V0f(r)� 4V`s
1

r

df(r)

dr
` · s+ UCoul(r) (3)

where f(r) = �(1 + exp[(r � R0)/a])
�1. The WS po-

tential depth V0, the spin-orbit strength V`s, the radius R0

and the diffuseness a are the four parameters that enter the
optimization carried out independently for protons and neu-
trons. The Coulomb potential for protons UCoul was kept fixed
and equal to the potential generated by a spherical Gaussian
charge distribution. It can be cast in the form UCoul(r) =

2e2 erf(r/ ˜Rch)/r [42], where ˜Rch = 4Rch/(3
p
⇡) and the

experimental value of charge radius of 4He is Rch = 1.681 fm
[43].

A general form of a two-body effective nuclear potential
was derived in the early 1940s [44, 45], when a tensor poten-
tial was added in addition to central and two-body spin-orbit
potentials to describe the quadrupole moment of the deuteron.
The first applications of such an interaction using Gaussian
form factors succeeded in reproducing nucleon-nucleon (NN)
scattering data up to 300 MeV [46]. In this paper, we shall
use a NN-potential which is a sum of central, spin-orbit, ten-
sor, and Coulomb terms:

V = Vc + VLS + VT + VCoul. (4)

The two-body Coulomb potential VCoul(r) = e2/r between
valence protons is treated exactly by incorporating its long-
range part into the basis potential (see Ref. [47] for a detailed
description of the method). The central, spin-orbit and tensor
part of the interaction are based on an interaction introduced

in Ref. [48, 49]:

˜Vc(r) =

3X

n=1

V n
c (Wn

c +Bn
c P� �Hn

c P⌧

�Mn
c P�P⌧ ) e��n

c r2 (5)

˜VLS(r) = L · S
2X

n=1

V n
LS (Wn

LS �Hn
LSP⌧ ) e

��n
LSr2 (6)

˜VT (r) = Sij

3X

n=1

V n
T (Wn

T �Hn
T P⌧ ) r

2e��n
T r2 , (7)

where r ⌘ rij stands for the distance between the nucle-
ons i and j, L is the relative orbital angular momentum,
S = (�i + �j)/2, Sij = 3(�i · r̂)(�j · r̂) � �i · �j , and
P� and P⌧ are spin and isospin exchange operators, respec-
tively. Each part of the interaction is the sum of (two or) three
gaussians with different ranges: a short range to account for
the hard core, a long range to mimic the one-pion exchange
potential, and an intermediate range. The spin-orbit interac-
tion does not contain a long-range part and is only a sum of
two gaussians [50]. The original parameters of the interac-
tion of Refs. [48, 49] are listed in Table I; they were used to
reproduce the binding energy of 4He, as well as the nucleon
scattering phase shifts of on A = 3, 4 nuclei.

TABLE I. Parameters of the central, spin-orbit, and tensor interac-
tions of Ref. [48]. The depths V n are given in MeV for the central
and spin-orbit interactions and in MeV fm�2 for the tensor interac-
tion. The ranges � are in fm�2. The Wigner, Majorana, Bartlett, and
Heisenberg parameters are dimensionless.

n V n �n Wn Mn Bn Hn

1 �6.0 0.160 �0.2363 1.1530 0.5972 �0.5139
Vc 2 �546.0 1.127 0.4242 0.4055 0.1404 0.030

3 1655.0 3.400 0.4474 0.3985 0.1015 0.0526

VLS
1 1918.0 5.0 0.5 �0.5
2 �1519.0 3.0 0.5 �0.5

1 �16.96 0.53 0.3277 0.6723
VT 2 �369.5 1.92 0.4102 0.5898

3 1688.0 8.95 0.5 0.5

In order to be applied in the present GSM formalism, the
interaction is rewritten in terms of the spin-isospin projectors
⇧ST [51, 52]:

Vc(r) = V 11
c f11

c (r)⇧11 + V 10
c f10

c (r)⇧10

+ V 00
c f00

c (r)⇧00 + V 01
c f01

c (r)⇧01, (8)

VLS(r) = (L · S)V 11
LS f11

LS (r)⇧11, (9)

VT (r) = Sij

⇥
V 11

T f11
T (r)⇧11 + V 10

T f10
T (r)⇧10

⇤
, (10)

with the seven interaction strengths in spin-isospin channels,
V 11
c , V 10

c , V 00
c , V 01

c , V 11
LS , V 11

T , and V 10
T , remaining to be op-

timized. The form factors fST are linear combinations of the
original radial form-factors appearing in Eqs. (5-7). They are
normalized to the first parameter V 1 for each central, spin-
orbit, and tensor terms in order to make them dimensionless.
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