Quantified Gamow Shell Model interaction for *psd*-shell nuclei

Y. Jaganathen (MSU), R. ld Betan (CONICET), <u>N. Michel (MSU)</u>, W. Nazarewicz (MSU), M. Płoszajczak (GANIL)

Quantified Gamow Shell Model interaction for *psd*-shell nuclei

We have optimized an **effective N+NN potential** within the **Gamow Shell Model (GSM)** framework, designed to describe a variety of **structure (bound + unbound)** and **reaction** observables across the **psd-shell** nuclei (A ~ 5 - 15)

Statistical studies have been carried out to assess **statistical uncertainties and correlations** between parameters and/or predicted observables

¹⁰Li experimental spectrum

Outline

- 1. The framework
 - The Gamow Shell Model
 - Optimization and Uncertainty Quantification
- 2. The quantified GSM effective interaction
 - The core potential
 - The NN interaction
- 3. Applications
 - A=7 nuclei
 - Helium spectra
- 4. Conclusions

The Framework: The Gamow Shell Model

- Open-quantum system extension of the traditional Shell Model
- Both correlations and continuum effects are treated on the same footing (Berggren ensemble)
- GSM-Cluster orbital shell model (COSM) Hamiltonian:

$$H = \sum_{i=1}^{N_v} \left[\frac{\vec{p}_i^2}{2\mu_i} + U(i) \right] + \sum_{i< j=1}^{N_v} \left[V_{\text{res}}(i,j) + \frac{\vec{p}_i \cdot \vec{p}_j}{M_c} \right]$$

- Translational invariance
- Exact treatment of the Coulomb interaction

The Interaction

- ⁴He core modeled by a Woods-Saxon + spin-orbit + Coulomb
- Configuration space: psdf
 - $Op_{3/2}$, $Op_{1/2}$ and/or $1s_{1/2}$, $Od_{5/2}$ resonances
 - s, p, d and f scattering continua, k_{max} = 2.0 fm⁻¹

- Effective finite-range NN potential
 - Gaussian-like with central + spin-orbit + tensor + Coulomb channels
 - Based on H. Furutani, H. Horiuchi, and R. Tamagaki, Prog. Theor. Phys. 62, 981 (1979)
 - 7 parameters adjusted to the He, Li, Be chain ground-state energies + chosen excited states
- The calculations were made possible by the hybrid parallelization of the GSM code

The Optimization

Chi-square minimization

J. Dobaczewski, W. Nazarewicz, P.-G. Reinhard, J. Phys. G: Nucl. and Part. Phys. 41, 074001 (2014)

$$\chi^{2}(\mathbf{p}) = \sum_{i=1}^{N_{d}} \left(\frac{\mathcal{O}_{i}(\mathbf{p}) - \mathcal{O}_{i}^{\exp}}{\delta \mathcal{O}_{i}} \right)^{2}$$

Part of the arbitrariness of the adopted errors is removed by requiring that

$$\frac{\chi^2(\mathbf{p}_0)}{N_{\rm dof}}\leftrightarrow 1$$

at the minimum \mathbf{p}_0 (similarly to the case of a purely statistical distribution).

In the case of a single type of data (and negligible experimental + numerical errors):

⇒ Global scaling of the adopted errors (One single Birge factor)

The Optimization

- The minimization were performed using the Gauss-Newton algorithm augmented by the Singular Value Decomposition (SVD) technique:
- Gauss-Newton method (for the overdetermined case N_{data} > N_{param})

$$P_{(s+1)} = P_{(s)} - \left(J_{(s)}^T J_{(s)}\right)^{-1} J_{(s)}^T F_{(s)}$$

- s : step P : parameter-vector J : Jacobian F : residual vector
- Singular Value Decomposition (SVD): Moore-Penrose pseudoinverse to deal with sloppy parameters:

$$M^{-1} = PD^{-1}P^{-1} \rightarrow M_{MP}^{-1} = PD_{MP}^{-1}P^{-1}$$

 $\Rightarrow MX = B$ is solved in a restricted subspace of the space image of M.

The Statistical Uncertainty Quantification

Covariance matrix (linear regression)

The Core Potential

 The Woods-Saxon + spin-orbit + Coulomb was adjusted to N-4He phase shifts up to E_{cm} = 20 MeV

Particle	R ₀ [fm]	a [fm]	V ₀ [MeV]	V _{so} [MeV fm ²]	R _{ch} [fm]
neutron	2.15 ± 0.04	0.63 ± 0.02	41.9 ± 1.0	7.21 ± 0.20	
proton	2.06 ± 0.04	0.64 ± 0.02	44.4 ± 1.1	7.24 ± 0.21	1.681

n\p	R ₀	а	Vo	V _{so}
R ₀	•	-0.81	-0.94	-0.78
а	-0.75	•	0.59	0.81
V ₀	-0.95	0.51	•	0.62
V _{so}	-0.75	0.84	0.55	•

Correlation coefficients (Normalized covariance matrix)

The zeroth order NN potential

- 4 nucleons in the continuum (converged calculations)
- Could be used with other models (DMRG)

Nucleus	State	E	E_{exp}	Г	Γexp
⁶ He	0^+	-1.063	-0.973		
⁶ He	2^{+}	0.938	0.824	168	113(20)
⁷ He	$3/2^{-}$	-0.578	-0.528	178	150(20)
⁸ He	0^+	-3.225	-3.112		
⁶ Li	1^{+}	-3.724	-3.699		
⁶ Li	0^+	-0.054	-0.136		
⁷ Li	$3/2^{-}$	-10.688	-10.949		
⁷ Li	$1/2^{-}$	-10.359	-10.471		
⁸ Li	2^{+}	-13.350	-12.982		
⁹ Li	$3/2^{-}$	-16.677	-17.046		
⁶ Be	0^+	1.390	1.371	21	92(6)
⁷ Be	$3/2^{-}$	-8.977	-9.305		
⁸ Be	0^+	-28.572	-28.204	0	0.0056(3)
⁹ Be	$3/2^{-}$	-30.230	-29.870		
⁹ Be	$1/2^{+}$	-27.747	-28.186	0	217(10)

- r.m.s. deviation of 250 keV
- Good starting point for detailed structural and reaction studies

The zeroth order NN potential

Parameters

Pa	rameter	Value		
	S=1, T=1	-3.2 ± 22.0		
o o lotro l	S=1, T=0	-5.1 ± 1.0		
central	S=0 , T=0	-21.3 ± 6.6		
	S=0, T=1	-5.6 ± 0.5		
spin-orbit	S=1, T=1	-540 ± 1240		
tensor	S=1, T=1	-12.1 ± 79.5		
	S=1, T=0	-14.2 ± 7.1		

 Singular values (eigenvalues of the normalized Hessian matrix)

\overline{n}	s_n	V_{c}^{11}	V_c^{10}	V_c^{00}	V_{c}^{01}	V_{LS}^{11}	V_T^{11}	V_T^{10}
1	243	0.00	0.82	-0.03	0.53	0.00	0.00	0.23
2	43.0	0.00	-0.49	-0.02	0.85	0.00	-0.01	-0.19
3	7.06	-0.04	-0.16	0.79	0.05	0.04	-0.07	0.58
4	3.94	0.02	-0.25	-0.61	0.01	-0.09	-0.04	0.75
5	0.57	-0.23	-0.02	-0.09	0.00	0.97	-0.01	0.04
6	0.20	0.65	-0.03	0.04	0.01	0.16	0.74	0.06
7	0.12	0.73	0.01	0.00	0.00	0.16	-0.66	-0.04

 $3/2^{-1}$

- Four parameters completely govern the optimization!
- The three remaining parameters are **sloppy**, i.e. unconstrained by the chosen set of experimental data
 - Can be constrained by experimental data of different kinds (charge/matter radii, EM maments)
 - Could be used to locally fine-tune the interaction

(MeV)

Predictions - Energy Spectra, A=7 nuclei

- Computed uncertainties have two components: $\Delta E = \sqrt{\Delta E_N^2 + \Delta E_{NN}^2}$
- A=7 nuclei:

State	E _{calc} (MeV)	E _{exp} (MeV)	Γ _{calc} (keV)	Γ _{exp} (keV)
⁷ He, 5/2-	+2.50 (2)	+2.39 (9)	2250 (280)	1990 (170)
⁷ Be, 1/2-	-8.67 (45)	-8.88		
⁷ B, 3/2-	+3.42 (21)	+3.58 (7)	740 (450)	801 (20)

- $\Delta E_N < 0.07$ MeV (small compared to ΔE_{NN})
- Good overall agreement for the energies and the widths

Predictions - Energy Spectra, Heliums

▶ ⁸He, 2⁺:

- Uncertainty coming from the WS: $\Delta E_N = 0.07 \text{ MeV}$
- Prediction with uncertainties does not favor any of the experimental scenario
- **9He**: not resolved experimentally
 - $\Delta E_N (1/2^+) = 0.13 \text{ MeV}, \Delta E_N (1/2^-) = 0.59 \text{ MeV}$ (s1/2 and p1/2 are less constrained in the WS)
 - Shell inversion observed (mean values)

Summary and Outlook

- The interaction is well optimized to the ground state + some excited state energies of the He, Li and Be chains
- The SVD analysis allowed to pinpoint the four interaction parameters which are reasonably constrained by the binding energies.
- The remaining three parameters are **sloppy**; hence new data are needed to limit them.
- With the covariance matrices calculated for the one and two-body potentials, we assessed uncertainties and correlations between physical quantities.
- In collaboration with the Department of Statistics and Probability at MSU, we have initiated a
 project to perform a Bayesian study of the interaction for a fully consistent statistical analysis (see
 Léo Neufcourt's talk this afternoon for a preliminary Bayesian study of the interaction).

Summary and Outlook

- The interaction is well optimized to the ground state + some excited state energies of the He, Li and Be chains
- The SVD analysis allowed to pinpoint the four interaction parameters which are reasonably constrained by the binding energies.
- The remaining three parameters are **sloppy**; hence new data are needed to limit them.
- With the covariance matrices calculated for the one and two-body potentials, we assessed uncertainties and correlations between physical quantities.
- In collaboration with the Department of Statistics and Probability at MSU, we have initiated a
 project to perform a Bayesian study of the interaction for a fully consistent statistical analysis (see
 Léo Neufcourt's talk this afternoon for a preliminary Bayesian study of the interaction).

Thank you for your attention!

Back-up

$$V = V_c + V_{LS} + V_T + V_{\text{Coul}}.$$

$$\tilde{V}_{c}(r) = \sum_{n=1}^{3} V_{c}^{n} \left(W_{c}^{n} + B_{c}^{n} P_{\sigma} - H_{c}^{n} P_{\tau} - M_{c}^{n} P_{\sigma} P_{\tau} \right) e^{-\beta_{c}^{n} r^{2}}$$
(5)

$$\tilde{V}_{LS}(r) = \boldsymbol{L} \cdot \boldsymbol{S} \sum_{n=1}^{2} V_{LS}^{n} \left(W_{LS}^{n} - H_{LS}^{n} P_{\tau} \right) e^{-\beta_{LS}^{n} r^{2}} \quad (6)$$

$$\tilde{V}_{T}(r) = S_{ij} \sum_{n=1}^{3} V_{T}^{n} \left(W_{T}^{n} - H_{T}^{n} P_{\tau} \right) r^{2} e^{-\beta_{T}^{n} r^{2}}, \qquad (7)$$

where $r \equiv r_{ij}$ stands for the distance between the nucleons *i* and *j*, *L* is the relative orbital angular momentum, $S = (\sigma_i + \sigma_j)/2$, $S_{ij} = 3(\sigma_i \cdot \hat{r})(\sigma_j \cdot \hat{r}) - \sigma_i \cdot \sigma_j$, and P_{σ} and P_{τ} are spin and isospin exchange operators, respecIn order to be applied in the present GSM formalism, the interaction is rewritten in terms of the spin-isospin projectors Π_{ST} [51, 52]:

$$V_{c}(r) = V_{c}^{11} f_{c}^{11}(r) \Pi_{11} + V_{c}^{10} f_{c}^{10}(r) \Pi_{10} + V_{c}^{00} f_{c}^{00}(r) \Pi_{00} + V_{c}^{01} f_{c}^{01}(r) \Pi_{01}, \quad (8)$$

$$V_{LS}(r) = (\boldsymbol{L} \cdot \boldsymbol{S}) V_{LS}^{11} f_{LS}^{11}(r) \Pi_{11}, \qquad (9)$$

$$V_T(r) = S_{ij} \left[V_T^{11} f_T^{11}(r) \Pi_{11} + V_T^{10} f_T^{10}(r) \Pi_{10} \right], \quad (10)$$