Shell-model interactions from chiral effective field theory

Lukas Huth, 06.11.2017

Outline

- Introduction
 - Nuclear shell model
 - Chiral effective field theory
 - Motivation
- Valence-shell interactions
 - Fit performance
 - Uncertainty estimates
- Results
 - Ground-state energies and spectra
 - Predictions
- Summary & outlook

Nuclear shell model

TECHNISCHE UNIVERSITÄT DARMSTADT

- Define a core
- Valence space above core Valence nucleons interact through effective interactions
- External space Assumption: effects of external space and core can be included in effective Hamiltonian

Effective Hamiltonian usually consists of single-particle energies (SPEs) and two-body matrix elements (TBMEs) **SPEs** taken, e.g., from core+1 spectrum **TBMEs** two-body interaction among valence nucleons

06.11.2017 | ISNET-5 | Institut für Kernphysik, Technische Universität Darmstadt | Lukas Huth | 1

Effective Hamiltonians

Traditional shell-model interactions:

- Fitted to ground-state and excitation energies in a valence space
- Very successful reproduction of experimental data (~ 100 keV RMS)

Ab initio approaches:

- ▶ NCSM, CC, IM-SRG, ...
- Based on few-body forces
- Modern approaches use chiral effective field theory (EFT)

Hebeler et al., Annu. Rev. Nucl. and Part. Sci. (2015)

Effective Hamiltonians

230

Traditional shell-model interactions:

0.6 © 0.5

- Fitted to ground-state and excitation energies in a valence space
- Very successful reproduction of experimental data (~ 100 keV RMS)

Ab initio approaches: tion

NCSM, CC, IM-SRG, ...

- Based on few-body forces
- Modern approaches use chiral effective field theory (EFT)

derive shell-model interactions based on chiral EFT

Chiral EFT contact interactions

For a free-space interaction:

- ► According to the spin part, interactions can be central, vector, and tensor $V_{\text{cont}}^{\text{NLO}}(\mathbf{p}, \mathbf{p}') = C_S + C_T (\sigma_1 \cdot \sigma_2) + C_1 \mathbf{q}^2 + C_2 \mathbf{k}^2 + C_3 \mathbf{q}^2 (\sigma_1 \cdot \sigma_2) + C_4 \mathbf{k}^2 (\sigma_1 \cdot \sigma_2)$ $+ C_5 i (\mathbf{q} \times \mathbf{k}) \cdot (\sigma_1 + \sigma_2) + C_6 (\mathbf{q} \cdot \sigma_1) (\mathbf{q} \cdot \sigma_2) + C_7 (\mathbf{k} \cdot \sigma_1) (\mathbf{k} \cdot \sigma_2)$
- Fit low-energy constants (LECs) to ground-state and excitation energies

In the valence space:

> Valence-space limits the maximal momenta (here HO length $b \approx 1.7$ fm)

$$\Lambda_{\rm HO} = \sqrt{2N+7}/b \stackrel{sd}{\approx} 375 \ {\rm MeV}$$
 König et al., PRC (2014)

Presence of a core defines a reference frame for the system

 \Rightarrow core breaks Galilean invariance (explicit dependence on center-of-mass momentum P) Schwenk, Friman, PRL (2004)

$$V_{\text{cont}}^{\text{NLOvs}}(\mathbf{p}, \mathbf{p}', \mathbf{P}) = V_{\text{cont}}^{\text{NLO}}(\mathbf{p}, \mathbf{p}') + P_1 \mathbf{P}^2 + P_2 \mathbf{P}^2(\sigma_1 \cdot \sigma_2) + P_3 i (\mathbf{q} \times \mathbf{P}) \cdot (\sigma_1 - \sigma_2) + P_4 (\mathbf{k} \times \mathbf{P}) \cdot (\sigma_1 \times \sigma_2) + P_5 (\mathbf{P} \cdot \sigma_1) (\mathbf{P} \cdot \sigma_2)$$

TECHNISCHE UNIVERSITÄT DARMSTADT

Fit performance

- Striking improvement from LO to NLO to NLO_{vs}
- LO errors larger than present σ_{th}
- Overall: small RMS deviation at NLO_{vs} with few statistical outliers (²¹O,^{22,23}Na, ³²Si and ³⁶S)

LH, V. Durant, J. Simonis, and A. Schwenk, in prep.

Preliminary N³LO results

Preliminary N³LO_{c,vs}:

- Determined by 24 free-space LECs + 5 NLO vs LECs + NLO pion exchange + 10 Central N³LO vs LECs + 3 SPE
- NLO outliers (²¹O,^{22,23}Na, ³²Si and ³⁶S) all improve at N³LO_{vs}

 \Rightarrow Promising behavior of preliminary results

Uncertainty estimates

Start with EKM uncertainties

Epelbaum et al., EPJA (2015)

$$\begin{split} \Delta X_{\nu=0}^{(\text{LO})} &= |X_{\nu=0}| Q^2 \,, \\ \Delta X_{\nu=2}^{(\text{NLO})} &= \max \left(\Delta X_{\nu=0} \,, |X_{\nu=2} - X_{\nu=0}| \right) Q \,, \\ \Delta X_{\nu} &= \max \left(\Delta X_{\nu-1} , |X_{\nu} - X_{\nu-1}| \right) Q \,. \end{split}$$

with $Q = \max \left(\frac{p}{\Lambda}, \frac{m_{\pi}}{\Lambda} \right)$ and $\Lambda = \Lambda_{HO} \approx 375 \text{ MeV}$

here: X can be a ground-state energy or excitation energy

Calculate LO uncertainty in reference to mean-field (mf) effects

$$\Delta X^{(\mathrm{LO})}_{
u=0}
ightarrow |X_{
u=0} - X_{\mathrm{mf}}|Q^2$$
.

For now: study uncertainties after fit, next step include while fitting

Uncertainty estimates

 For now: study uncertainties after fit, next step include while fitting Very preliminary N³LO includes those uncertainties (iteratively)
 Potassium gs uncertainty is dominated by LO uncertainty

 $\Delta E \sim 200 \cdot Q^5 \text{ MeV} pprox 1.5 \text{ MeV}$

Ground-state energies

Mass number

- LO slightly too attractive in the neutron-rich region
- NLO_{vs} corrects this LO behavior (uncertainty dominated by difference to LO)
- Preliminary N³LO follows this trend

06.11.2017 | ISNET-5 | Institut für Kernphysik, Technische Universität Darmstadt | Lukas Huth | 7

Ground-state energies: Predictions

Mass number

- LO slightly too attractive in the neutron-rich region
- NLO_{vs} corrects this LO behavior (uncertainty dominated by difference to LO)
- Preliminary N³LO follows this trend

06.11.2017 | ISNET-5 | Institut für Kernphysik, Technische Universität Darmstadt | Lukas Huth | 7

Spectra

¹⁹F and ²¹Ne:

- Order by order improvement
- Most uncertainties dominated by |E_{LO} - E_{NLO}|

³⁶Ar and ³⁸K:

- Outliers of very preliminary N³LO must be due to deviations in the gs
- Also here, order by order improvement

Spectra: Predictions

¹⁹F and ²¹Ne:

- Order by order improvement
- Most uncertainties dominated by |E_{LO} - E_{NLO}|

³⁶Ar and ³⁸K:

- Outliers of very preliminary N³LO must be due to deviations in the gs
- Also here, order by order improvement

²⁴O and ²⁶O:

- Very good agreement for ²⁴O
- ²⁶O prediction gets a bit worse at N³LO

Summary

- Shell-model interactions based on chiral EFT operators show promising results and order-by-oder improvement
- With (for now) post-processing EKM uncertainties
- Very preliminary: fit with EKM uncertainties for N³LO

Outlook

Valence-space interaction:

- Include all cm operators at N³LO
- Investigate $q/(2m_{\pi})$ expansion of TPE
- Calculations beyond the sd-shell and for cross-shell interactions

Uncertainties:

- LO is insufficient to describe the dataset: Most uncertainties are either dominated by the LO uncertainty or the difference between LO and NLO (investigate Bayesian methods)
- Include EFT uncertainties in all fits

06.11.2017 | ISNET-5 | Institut für Kernphysik, Technische Universität Darmstadt | Lukas Huth | 10

Outlook

Valence-space interaction:

Include all cm operators at N³LO

erc

European Research Council

- Investigate $q/(2m_{\pi})$ expansion of TPE
- Calculations beyond the sd-shell and for cross-shell interactions

Thank you for your attention!

Collaborators: V. Durant, J. Simonis and A. Schwenk

Bundesministerium für Bildung und Forschung

TECHNISCHE UNIVERSITÄT DARMSTADT

Fit performance

Interaction	#LECs	RMS [MeV]	USD RMS [MeV]
LO	2	1.77	-
NLO	9	0.72	0.43
NLO _{vs}	14	0.50	0.30
N ³ LO ^{nat} _{c.vs} +SPE	29	0.25	0.17
N ³ LO _{c,vs} +SPE	42	0.17	0.16

- systematics comparable to USD type interactions
- best RMS fit: close to USD, but unnatural LECs
- natural fit: only adjusts 29 linear combinations of the parameter set due to properties of the fit algorithm

Brown and Richter, PRC(2006)

LECs

Natural values at different orders can be calculated as follows:

$$\begin{split} & C_{\text{LO}}^{\text{nat}} = C_{\text{LO}} \cdot F_{\pi}^2 \\ & C/P_{\text{NLO}}^{\text{nat}} = C/P_{\text{NLO}} \cdot F_{\pi}^2 \Lambda_{\text{H.O.}}^2 \\ & D/Q_{\text{N}^3\text{LO}}^{\text{nat}} = D/Q_{\text{N}^3\text{LO}} \cdot F_{\pi}^2 \Lambda_{\text{H.O.}}^4 \end{split}$$

- LECs up to NLO_{vs} are of natural size
- ► N³LO_{c,vs}:
 - For now, we only use NLO pion exchange
 - Only central vs contributions at N³LO
- Cutoff Λ = 375 MeV is only an estimate, (large) bands for variation of 25 MeV

LECs

Natural values at different orders can be calculated as follows:

$$\begin{split} & C_{\text{LO}}^{\text{nat}} = C_{\text{LO}} \cdot F_{\pi}^2 \\ & C/P_{\text{NLO}}^{\text{nat}} = C/P_{\text{NLO}} \cdot F_{\pi}^2 \Lambda_{\text{H.O.}}^2 \\ & D/Q_{\text{N}^3\text{LO}}^{\text{nat}} = D/Q_{\text{N}^3\text{LO}} \cdot F_{\pi}^2 \Lambda_{\text{H.O.}}^4 \end{split}$$

- LECs up to NLO_{vs} are of natural size
- N³LO_{c,vs}:
 - For now, we only use NLO pion exchange
 - Only central vs contributions at N³LO
- Cutoff Λ = 375 MeV is only an estimate, (large) bands for variation of 25 MeV
- Relaxed fit constrains lead to unnatural values

Chiral EFT contact interactions

For a free-space interaction:

At any given order ν, we obtain operators proportional to momentum^ν (momentum transfer: q = p - p' and average momentum : k = ½ (p + p') with final and initial relative momenta p and p')

According to the spin part, interactions can be central, vector, and tensor

$$V_{\text{cont}}^{\text{NLO}}(\mathbf{p}, \mathbf{p}') = C_S + C_T (\sigma_1 \cdot \sigma_2) + C_1 \mathbf{q}^2 + C_2 \mathbf{k}^2 + C_3 \mathbf{q}^2 (\sigma_1 \cdot \sigma_2) + C_4 \mathbf{k}^2 (\sigma_1 \cdot \sigma_2) + C_5 i (\mathbf{q} \times \mathbf{k}) \cdot (\sigma_1 + \sigma_2) + C_6 (\mathbf{q} \cdot \sigma_1) (\mathbf{q} \cdot \sigma_2) + C_7 (\mathbf{k} \cdot \sigma_1) (\mathbf{k} \cdot \sigma_2)$$

In the valence space:

- Presence of a core defines a reference frame for the system
 - \Rightarrow core breaks Galilean invariance
- Interaction may depend explicitly on the center-of-mass momentum P
 - \Rightarrow new operator structures

Schwenk, Friman, PRL (2004)

New valence-space contact interactions

Valence-space (vs) operators, e.g.:

$$V_{\text{cont}}^{\text{NLOvs}}(\mathbf{p}, \mathbf{p}', \mathbf{P}) = V_{\text{cont}}^{\text{NLO}}(\mathbf{p}, \mathbf{p}') + P_1 \mathbf{P}^2 + P_2 \mathbf{P}^2(\sigma_1 \cdot \sigma_2) + P_3 i (\mathbf{q} \times \mathbf{P}) \cdot (\sigma_1 - \sigma_2) + P_4 (\mathbf{k} \times \mathbf{P}) \cdot (\sigma_1 \times \sigma_2) + P_5 (\mathbf{P} \cdot \sigma_1) (\mathbf{P} \cdot \sigma_2)$$

Valence-space limits the maximal momenta (here HO length $b \approx 1.7$ fm)

$$\Lambda_{\rm HO} = \sqrt{2N+7}/b \stackrel{sd}{\approx} 375 \,{\rm MeV}$$
 König et al., PRC (2014

no need for additional regulators (+ possible $q/2m_{\pi}$ expansion of TPE)

Fit to 441 states in the sd shell with χ^2 minimization (for now: $\sigma_k^{\text{th}} = 100 \text{ keV}$)

$$\chi^2 = \sum_{k=1}^{441} \frac{\left(\mathsf{E}_k^{\mathsf{exp}} - \mathsf{E}_k^{\mathsf{th}}\right)^2}{(\sigma_k^{\mathsf{exp}})^2 + (\sigma_k^{\mathsf{th}})^2}$$

Shell-model diagonalizations with ANTOINE

Nowacki, Caurier, Acta Phys. Pol. (1999)

Caurier et al., Rev. Mod. Phys. (2005)