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INTRODUCTION



▸ What information does available nuclear scattering 
data1,2 impose3 on a state—of-the-art “model”4 of 
the strong force between nucleons?

ONE-BULLET OVERVIEW

1 only 𝝅N and NN 
2 plus A=2-3 bound-state data 
3 using a frequentist approach. 
4 chiral effective field theory => systematically improvable



▸ Optimize LECs at N3LO of chiral EFT (Weinberg PC) with 
respect to 𝝅N, NN scattering data and A=2-3 bound states. 

▸ There are many LECs — making this a very difficult 
optimization problem. 

▸ We attempt uncertainty quantification and error 
propagation to few-body observables. 

▸ The analysis is repeated using information from a Roy-
Steiner analysis of 𝝅N data with resulting constraints on 
ci:s, di:s, ei:s. 

▸ Summary and Outlook

FIVE-BULLET OVERVIEW (FOR PHYSICISTS)



▸ Optimize LECs at N3LO of chiral EFT (Weinberg PC) with 
respect to 𝝅N, NN scattering data and A=2-3 bound states. 
Translation: 41 model parameters. 6000 experimental 
data points with small-to-large error bars. There is some 
prior knowledge of the model error. 

▸ There are many LECs — making this a very difficult 
optimization problem.  
Translation: We encounter a very flat chi2-surface with 
many local minima (sometimes non-quadratic).  
Question: How could this optimization problem be 
handled? (see also Andreas’ talk)

FIVE-BULLET OVERVIEW (TRANSLATED)



▸ We attempt uncertainty quantification and error 
propagation to few-body observables. 
Question: How to best perform uncertainty quantification 
and error propagation in this situation? 

▸ The analysis is repeated using information from a Roy-
Steiner analysis of 𝝅N data with resulting constraints on 
ci:s, di:s, ei:s.  
Question: How to handle the errors when combining 
experimental data with information from a theory analysis? 

▸ Summary and Outlook 
Translation: Summary and Outlook

FIVE-BULLET OVERVIEW (TRANSLATED)



FROM 𝝅N AND NN TO A=4 WITH CHIRAL 
EFT AND ERROR ANALYSIS

Based on work presented in: 

- B. Carlsson, A. Ekström, CF et al.,  Phys. Rev. X 6 (2016) 011019 

- B. Carlsson,  PhD thesis, manuscript in preparation



• Systematic low-energy 
expansion: (q/Λχ)𝜈 

• Connects several sectors: 
𝜋N, NN, NNN, jN 

• (Unknown) short-range 
physics included as 
contact interactions. 

• LECs need to be fitted to 
data.

CHIRAL EFT FOR NUCLEAR INTERACTIONS

Chiral EFT
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2N force 3N force 4N force 5N force

See Evgeny’s presentation



• Non-local, 2NF up to N5LO 
- D. R. Entem et al. PRC 91, 014002 (2015) 
- R. Machleidt et al. Phys. Rep. 503 (2011) 

• Non-local, leading 3NF 
- E. Epelbaum et al. PRC 66, 064001 (2002)  
- K. Hebeler et al. PRC 91, 044001 (2015)  

• Non-local, sub-leading 3NF 
- V. Bernard et al. PRC 77, 064004 (2008) 
- V. Bernard et al. PRC 84, 054001 (2011) 
- K. Hebeler et al. PRC 91, 044001 (2015)  

• 4th-order 𝝅Ν scattering  
- H. Krebs et al. PRC 85, 054006 (2015)

Selected key results 2N force 3N force 4N force 5N force

CHIRAL EFT FOR NUCLEAR INTERACTIONS

See Evgeny’s presentation



• Non-local, 2NF up to N3LO 
26 contacts  
4 ci:s + 4 di:s 

• Non-local, leading 3NF 
cD, cE  
3 ci:s 

• Non-local, subleading 3NF 
cS, cT 

• 4th-order 𝝅Ν scattering  
ci:s + di:s 
5 ei:s

CHIRAL NUCLEAR INTERACTIONS

Number of LECs 2N force 3N force 4N force 5N force

TOTAL: 
41 parameters



INPUT AND TECHNOLOGY
𝝅N scattering 
• WI08 database 
• Tlab between 10-70 MeV 
• Ndata = 1347 
• R. Workman et al. (2012)

NN scattering 
• Granada ‘13 database 
• Tlab between 0-290 MeV 
• Ndata = 4753 (np + pp) 
• R. Navarro Pérez et al. (2013)

All 6000 residuals computed on 1 node in ~90 sec.
A=2,3 bound states 
• 2H,3H,3He [binding energy, 

radius, Q(2H), 3H half life]

On 1 node in ~10 sec

+ derivatives! (×2-20 cost)

𝝅N scattering 
• Roy-Steiner analysis 

M. Hoferichter et al. (2015)

NN scattering 
• Phase shifts from partial wave 

analysis

Alternatively… theoretical analysis of data



OPTIMIZATION STRATEGY
Low-energy constants (LECs) need to be fitted to experimental data. 
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‣ Derivative-free optimization using POUNDerS  was used in our earliest 
works  

‣ More efficient minimization algorithms (Levenberg-Marquardt, 
Newton), and statistical error analysis require derivatives 

‣ Numerical derivation using finite differences is plagued by low 
numerical precision and is computationally costly. 

‣ Instead, we use Automatic Differentiation (AD)
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▸ The total error budget is 

▸ At a given chiral order ν, the omitted diagrams should be of 
order 

▸ Still needs to be converted to actual numbers 𝜎model 

▸ We translate this EFT knowledge into an error in the 
scattering amplitudes 
 

▸ which is then propagated to an error in the observable.
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OPTIMIZATION STRATEGY
Low-energy constants (LECs) need to be fitted to experimental data. 

FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
(+ Ctnn1S0) 

TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

# parameters that are allowed to vary:
13 1-8 per channel 25 2+1=3 41

# minima at each stage 
(used as starting points for the next stage); (𝚲=500 MeV)

1 25x5=160 160 10425x4=128

1S0, 1P1, 3P0, 3P1, 3P2–3F2

2 per channel: 2 per channel:

3S1, 3D1, 3S1–3D1

5 in the deuteron  
channel:

4 in the deuteron 
channel:

Some cases with 
2 cD, cE optima
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FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION



FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

Granada 2013 phase shifts 



FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

Different minima in 3P2-3F2



FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

Granada 2013 phase shifts 



FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

Lowest 𝜒2/datum
𝝅N 𝜒2/datum

N3LOsim



FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION



FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

SCATTERING OBSERVABLES, ORDER-BY-ORDER (SIM)



FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

FIRST PREDICTIONS (A=4)



FIT 𝝅N-SECTOR 
TO 𝝅N DATA

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

stage 1:  
𝝅N only fit

Krebs et al 
PRC85, 054006



FIT 𝝅N-SECTOR 
TO SUBTHRESHOLD  

PARAMETERS

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

ROY-STEINER ANALYSIS OF 𝝅N SCATTERING

▸ Physical values of the momentum transfer in NN scattering is 
much closer to subthreshold kinematics in 𝝅N scattering than 
to the physical region.  

▸ Hoferichter et al. recently matched subthreshold parameters of 
𝝅N scattering from a solution of Roy-Steiner equations to 𝜒PT.  

▸ We allow these results to determine the long-range dynamics 
of the nuclear force within our optimization framework  
[𝝅N LECs and covariance matrix from PRL 115, 192301 (2015)].

Preliminary



FIT 𝝅N-SECTOR 
TO SUBTHRESHOLD  

PARAMETERS

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

ROY-STEINER ANALYSIS OF 𝝅N SCATTERING

▸ We still find multiple minima in the NN optimization.  

▸ Keeping only the most promising one we perform the 
simultaneous optimization of the final stage replacing 
the optimization w.r.t. 𝝅N data with 
 

▸ We use f=1000 to stay close to the RS values for the ci:s.

Question: How to best combine experimental data with 
information from a theory analysis?

2f(~p⇡N � ~pRS)
TC�1

RS(~p⇡N � ~pRS)

Preliminary



FIT 𝝅N-SECTOR 
TO SUBTHRESHOLD  

PARAMETERS

FIT NN  
CONTACTS TO  

NN PHASE SHIFTS

FIT NN  
CONTACTS TO  

NN DATA

FIT CD,CE  
TO A=3 DATA

SIMULTANEOUS 
OPTIMIZATION

ROY-STEINER ANALYSIS OF 𝝅N SCATTERING

▸ A simultaneous optimization of this objective function 
leads to a good description on all NN and NNN data.   

▸ For instance np χ2/datum = 3.5.  

▸ The LECs remain in the Roy-Steiner region (to ~1𝛔) 

▸ Predictions for 4He still disagree with experiments 

▸ E(4He) = -29.4 MeV 

▸ R(4He) = 1.38 fm

Preliminary



STATISTICAL ERROR ANALYSISStatistical errors

I In a minimum there will be an uncertainty in the optimal
parameter values p

0

given by the �2 surface.1

I From the hessian at p
0

we can calculate a covariance matrix
and from that a correlation matrix.

1

J Dobaczewski et al 2014 J. Phys. G: Nucl. Part. Phys. 41 074001

Boris D. Carlsson �EFT optimization

O(p0 +�p)�O(p0) ⇡
�
�pT

�
JO +

1

2

�
�pT

�
HO (�p)

‣ Approximate the objective function with a quadratic form in 
the vicinity of the optimum. Compute the hessian matrix. 

‣ Expand observables similarly, to second order  

‣ The covariance between two observables is then

Cov(OA,OB) ⇡ JT
OA

Cov(p0)JOB + second order



HESSIAN UNCERTAINTY QUANTIFICATION

11

Table II. Statistical uncertainties propagated from the NN , NNN , and ⇡N LECs to the ground-state energies (in MeV) and
radii (in fm) for A  4 nuclei, the deuteron D-state probability D(2H) (in percent) and quadrupole moment Q(2H) (in fm2) and
e↵ective range observables for the 1S

0

channel (in fm). Gray background indicates that the corresponding result is a prediction.
Asymmetrical errors are due to the quadratic dependence of the observables on the LECs. The error bars on the experimental
values for bound-state observables include both experimental and method uncertainties as detailed in Table I.
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Figure 11. Spread in the phase shift in the 3P
0

phase shift for
neutron-proton scattering. The bands are from the range of
variations from the sim-potentials with ⇤ = 450 � 575 MeV,
all optimized with Tmax

lab

= 290 MeV. The black, solid lines
are the phase shift optimized minima at ⇤ = 500 MeV.

to constrain the N3LO three-body force.

Be more specific.

Therefore, it is of interest to study predictions at N3LO
with di↵erent three-body forces. We have fitted N3LO
interactions using (i) no three-body force, (ii) the N2LO
three-body force and (iii) the N3LO three-body force.
Predictions for E(4He) for all of these cases are shown in
Fig. 12.

Figure 12. Spread in the prediction of E(4He) at di↵er-
ent orders. The bands are from the range of variations of
the potentials with ⇤ = 450 � 575 MeV, all optimized with
Tmax

lab

= 290 MeV. N3LOsim
onlyNN

are N3LO potentials with-
out a three-body force and N3LOsim

mixed

are mixed-order
potentials with the NN part at N3LO and the NNN part at
N2LO.

Say something more about these results, mention
four-body forces?
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ent orders. The bands are from the range of variations of
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Say something more about these results, mention
four-body forces?



▸ The hessian UQ relies on a quadratic shape of the 𝜒2-surface. 

▸ The local minima of our 𝜒2-surface are often very flat in some 
directions. Curvature is dominated by fourth-order terms. 

▸ A possible solution: Lagrange multiplier optimization: 

▸ Minimize

LAGRANGE MULTIPLIER

F (p,�) = �2(p) + � · O(p)

𝜆i

�2(p0) +��2

O(p0)��O O(p0) +�O
�2(p0)

pi

pj �2(p)

O(p0)

O(p)



COMPARISON: HESSIAN UQ VS LAGRANGE-MULTIPLIER UQ

10

Figure 9. Comparison between selected NN and ⇡N experimental data sets and theoretical calculations for chiral interactions
at LO, NLO, NNLO, and N3LO. The bands indicate the total errors (statistical plus model errors). (a) np total cross section;
(b) np total cross section; (c) np di↵erential cross section; (d) ⇡N charge-exchange, di↵erential cross section; (e) ⇡N elastic,
di↵erential cross section.

almost zero, and the curvature is therefore dominated
by fourth-order terms. This behavior is symptomatic
of poorly constrained interactions. A non-quadratic chi-
squared surface clearly complicates a statistical analysis
that relies on a standard Hessian approach, as outlined
in e.g. Refs. [14, 37].

Due to this we also obtain negative eigenvalues of the
covariance matrix We improve upon the situation by in-
corporating an approximation of fourth-order derivatives
with respect to the LECs using

@�2(↵)

@↵a@↵b@↵c@↵d
⇡ 2

X

i

(rabrcd + racrbd + radrbc) . (8)

This provides us with a more reliable representation of
the curvature at the optimum and removes the negative
eigenvalues of the covariance matrix. From this, we can
estimate the uncertainties in the LECs and propagate the
statistical uncertainties at N3LO to some relevant few-
nucleon observables, see Tab. I. In Fig. 10 this approach
is compared to the uncertainty obtained by employing
Lagrange multipliers [37] for r

pt-p

(4He).

C. Family of potentials

The rationale behind varying Tmax

lab

is that the LECs
are well constrained even without the high-energy NN
scattering data, therefore providing slightly di↵erent pa-
rameterizations. However, at N3LO these data are
needed to constrain the LECs. Indeed, the large amount
of minima that describe the data well already indicates
that even more data are desirable. Therefore, only the
Tmax

lab

= 290MeV interactions are included in the family
of interactions. Due to di�culties at the highest regulator

Figure 10. Statistical uncertainties for r
pt-p

(4He) for the
N3LOsim interaction. The circles, obtained using Lagrange
multipliers, represent the lowest possible value of �2 for the
given �r

pt-p

(4He), as described in Ref. [37]. The allowed
variation in r

pt-p

(4He) is obtained from the intersection with
the ��2 = 1 line. The horizontal, dotted lines indicate the
uncetainties obtained using a covariance-based method.

cuto↵ value, we also use the upper limit of ⇤ = 575MeV
instead. The resulting six fitted interactions are used to
gauge the size of the model uncertainty.

describe this better

As a first example, we present in Fig. 11 the esti-
mated model uncertainties for the 3P

0

neutron-proton
phase shift.
Using the family of interactions at all orders from LO

to N3LO, we obtain estimates for the model uncertainty
in E(4He), shown in Fig. 12. It turns out that the quality
of the N3LO predictions are worse than at NNLO. The
cause of this is believed to be due to a lack of A � 3 data

see also B. Carlsson et al.,  Phys. Rev. C 95 (2017) 034002



▸ So far, all results have been obtained with a non-local 
regulator with cutoff Λ=500 MeV. 
▸ A subset of systematic uncertainties can be probed by varying Λ. 

▸ Reoptimizing with different Λ (450-575 MeV) will give us a 
family of models. 

▸ All of them will reproduce the same few-body physics.

EXPLORING FURTHER SYSTEMATIC UNCERTAINTIES
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Table II. Statistical uncertainties propagated from the NN , NNN , and ⇡N LECs to the ground-state energies (in MeV) and
radii (in fm) for A  4 nuclei, the deuteron D-state probability D(2H) (in percent) and quadrupole moment Q(2H) (in fm2) and
e↵ective range observables for the 1S

0

channel (in fm). Gray background indicates that the corresponding result is a prediction.
Asymmetrical errors are due to the quadratic dependence of the observables on the LECs. The error bars on the experimental
values for bound-state observables include both experimental and method uncertainties as detailed in Table I.
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Figure 11. Spread in the phase shift in the 3P
0

phase shift for
neutron-proton scattering. The bands are from the range of
variations from the sim-potentials with ⇤ = 450 � 575 MeV,
all optimized with Tmax

lab

= 290 MeV. The black, solid lines
are the phase shift optimized minima at ⇤ = 500 MeV.

to constrain the N3LO three-body force.

Be more specific.

Therefore, it is of interest to study predictions at N3LO
with di↵erent three-body forces. We have fitted N3LO
interactions using (i) no three-body force, (ii) the N2LO
three-body force and (iii) the N3LO three-body force.
Predictions for E(4He) for all of these cases are shown in
Fig. 12.

Figure 12. Spread in the prediction of E(4He) at di↵er-
ent orders. The bands are from the range of variations of
the potentials with ⇤ = 450 � 575 MeV, all optimized with
Tmax

lab

= 290 MeV. N3LOsim
onlyNN

are N3LO potentials with-
out a three-body force and N3LOsim

mixed

are mixed-order
potentials with the NN part at N3LO and the NNN part at
N2LO.

Say something more about these results, mention
four-body forces?

SYSTEMATIC UNCERTAINTIES
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TableII.StatisticaluncertaintiespropagatedfromtheNN,NNN,and⇡NLECstotheground-stateenergies(inMeV)and
radii(infm)forA4nuclei,thedeuteronD-stateprobabilityD(2H)(inpercent)andquadrupolemomentQ(2H)(infm2)and
e↵ectiverangeobservablesforthe1S

0

channel(infm).Graybackgroundindicatesthatthecorrespondingresultisaprediction.
AsymmetricalerrorsareduetothequadraticdependenceoftheobservablesontheLECs.Theerrorbarsontheexperimental
valuesforbound-stateobservablesincludebothexperimentalandmethoduncertaintiesasdetailedinTableI.
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Figure11.Spreadinthephaseshiftinthe3P
0

phaseshiftfor
neutron-protonscattering.Thebandsarefromtherangeof
variationsfromthesim-potentialswith⇤=450�575MeV,
alloptimizedwithTmax

lab

=290MeV.Theblack,solidlines
arethephaseshiftoptimizedminimaat⇤=500MeV.

toconstraintheN3LOthree-bodyforce.

Bemorespecific.

Therefore,itisofinteresttostudypredictionsatN3LO
withdi↵erentthree-bodyforces.WehavefittedN3LO
interactionsusing(i)nothree-bodyforce,(ii)theN2LO
three-bodyforceand(iii)theN3LOthree-bodyforce.
PredictionsforE(4He)forallofthesecasesareshownin
Fig.12.

Figure12.SpreadinthepredictionofE(4He)atdi↵er-
entorders.Thebandsarefromtherangeofvariationsof
thepotentialswith⇤=450�575MeV,alloptimizedwith
Tmax

lab

=290MeV.N3LOsim
onlyNN

areN3LOpotentialswith-
outathree-bodyforceandN3LOsim

mixed

aremixed-order
potentialswiththeNNpartatN3LOandtheNNNpartat
N2LO.

Saysomethingmoreabouttheseresults,mention
four-bodyforces?

sim w. NNLO(3NF)simsimsim (NN only)
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Table II. Statistical uncertainties propagated from the NN , NNN , and ⇡N LECs to the ground-state energies (in MeV) and
radii (in fm) for A  4 nuclei, the deuteron D-state probability D(2H) (in percent) and quadrupole moment Q(2H) (in fm2) and
e↵ective range observables for the 1S

0

channel (in fm). Gray background indicates that the corresponding result is a prediction.
Asymmetrical errors are due to the quadratic dependence of the observables on the LECs. The error bars on the experimental
values for bound-state observables include both experimental and method uncertainties as detailed in Table I.
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Figure 11. Spread in the phase shift in the 3P
0

phase shift for
neutron-proton scattering. The bands are from the range of
variations from the sim-potentials with ⇤ = 450 � 575 MeV,
all optimized with Tmax

lab

= 290 MeV. The black, solid lines
are the phase shift optimized minima at ⇤ = 500 MeV.

to constrain the N3LO three-body force.

Be more specific.

Therefore, it is of interest to study predictions at N3LO
with di↵erent three-body forces. We have fitted N3LO
interactions using (i) no three-body force, (ii) the N2LO
three-body force and (iii) the N3LO three-body force.
Predictions for E(4He) for all of these cases are shown in
Fig. 12.

Figure 12. Spread in the prediction of E(4He) at di↵er-
ent orders. The bands are from the range of variations of
the potentials with ⇤ = 450 � 575 MeV, all optimized with
Tmax

lab

= 290 MeV. N3LOsim
onlyNN

are N3LO potentials with-
out a three-body force and N3LOsim

mixed

are mixed-order
potentials with the NN part at N3LO and the NNN part at
N2LO.

Say something more about these results, mention
four-body forces?
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Table II. Statistical uncertainties propagated from the NN , NNN , and ⇡N LECs to the ground-state energies (in MeV) and
radii (in fm) for A  4 nuclei, the deuteron D-state probability D(2H) (in percent) and quadrupole moment Q(2H) (in fm2) and
e↵ective range observables for the 1S
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channel (in fm). Gray background indicates that the corresponding result is a prediction.
Asymmetrical errors are due to the quadratic dependence of the observables on the LECs. The error bars on the experimental
values for bound-state observables include both experimental and method uncertainties as detailed in Table I.
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Figure 11. Spread in the phase shift in the 3P
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phase shift for
neutron-proton scattering. The bands are from the range of
variations from the sim-potentials with ⇤ = 450 � 575 MeV,
all optimized with Tmax
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= 290 MeV. The black, solid lines
are the phase shift optimized minima at ⇤ = 500 MeV.

to constrain the N3LO three-body force.

Be more specific.

Therefore, it is of interest to study predictions at N3LO
with di↵erent three-body forces. We have fitted N3LO
interactions using (i) no three-body force, (ii) the N2LO
three-body force and (iii) the N3LO three-body force.
Predictions for E(4He) for all of these cases are shown in
Fig. 12.

Figure 12. Spread in the prediction of E(4He) at di↵er-
ent orders. The bands are from the range of variations of
the potentials with ⇤ = 450 � 575 MeV, all optimized with
Tmax
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= 290 MeV. N3LOsim
onlyNN

are N3LO potentials with-
out a three-body force and N3LOsim

mixed

are mixed-order
potentials with the NN part at N3LO and the NNN part at
N2LO.

Say something more about these results, mention
four-body forces?



CONCLUSION



▸ There are roughly 100 local minima when the non-local 
N3LO NN+NNN interaction is optimized w.r.t. A=2,3 data.  
- Typically, the NN and 𝝅N chi2/datum is 2 across the board. 
- The best few (2-4) candidate(s) predict the E(4He) within 2 MeV, 

however the radii are too small.  
▸ In few-nucleon calculations, the non-local 3N-interaction is 

not a small  perturbation, compared to N2LO,  
▸ 𝝅N coupling constants are of expected size.  

- However, they are very poorly constrained from 𝝅N data alone.  
- When fitted simultaneously, c3 c4 deviate significantly from the 

values obtained when fitted w.r.t. 𝝅N scattering data. 
▸ Lagrangian multiplier optimization and UQ for non-

quadratic cases. No need for derivatives.

SUMMARY (MAINLY FOR PHYSICISTS)



▸ The inclusion of more data in the objective function requires 
other approaches to the optimization problem needed.  
(See also Andreas’ presentation.) 

▸ The frequentist approach does not offer an easy and 
transparent method for handling systematic uncertainties or 
imposing prior knowledge.  

▸ Bayesian parameter estimation is advantageous, but costly.  
- avoiding the need to ‘judge’,  a priori, what data can be 

included in order to safely avoid overfitting.  
- not obvious whether local minima will vanish. 
- offers a viable approach to include prior knowledge of 

certain parameters from Roy-Steiner analysis. 
▸ Investigate other chiral EFT power-counting schemes.  

(See also Andreas’ presentation.)

OUTLOOK


