

THE DATA PERSPECTIVE ON CHIRAL EFFECTIVE FIELD THEORY

CHRISTIAN FORSSÉN

Department of Physics, Chalmers, Sweden

ISNET-5 workshop, York, Nov. 6-9, 2017

MANY THANKS TO MY COLLABORATORS

Boris Carlsson, Andreas Ekström (Chalmers)

- Kai Hebeler (Darmstadt), Gustav Jansen (ORNL), Kyle Wendt (ORNL/UT now LLNL)
- And many people in the *ab initio nuclear theory* community for enlightening discussions

Research funded by:

- STINT
- European Research Council
- Swedish Research Council

INTRODUCTION

What information does available nuclear scattering data^{1,2} impose³ on a state–of-the-art "model"⁴ of the strong force between nucleons?

- ¹ only πN and NN
- ² plus A=2-3 bound-state data
- ³ using a frequentist approach.
- ⁴ chiral effective field theory => systematically improvable

FIVE-BULLET OVERVIEW (FOR PHYSICISTS)

- Optimize LECs at N3LO of chiral EFT (Weinberg PC) with respect to πN , NN scattering data and A=2-3 bound states.
- There are many LECs making this a very difficult optimization problem.
- We attempt uncertainty quantification and error propagation to few-body observables.
- The analysis is repeated using information from a Roy-Steiner analysis of πN data with resulting constraints on ci:s, di:s, ei:s.
- Summary and Outlook

FIVE-BULLET OVERVIEW (TRANSLATED)

- Optimize LECs at N3LO of chiral EFT (Weinberg PC) with respect to πN, NN scattering data and A=2-3 bound states.
 Translation: 41 model parameters. 6000 experimental data points with small-to-large error bars. There is some prior knowledge of the model error.
- There are many LECs making this a very difficult optimization problem.
 Translation: We encounter a very flat chi2-surface with many local minima (sometimes non-quadratic).
 Question: How could this optimization problem be handled? (see also Andreas' talk)

FIVE-BULLET OVERVIEW (TRANSLATED)

- We attempt uncertainty quantification and error propagation to few-body observables.
 Question: How to best perform uncertainty quantification and error propagation in this situation?
- The analysis is repeated using information from a Roy-Steiner analysis of πN data with resulting constraints on ci:s, di:s, ei:s.
 - **Question**: How to handle the errors when combining experimental data with information from a theory analysis?
- Summary and Outlook
 Translation: Summary and Outlook

Based on work presented in:

- B. Carlsson, A. Ekström, CF et al., Phys. Rev. X 6 (2016) 011019
- B. Carlsson, PhD thesis, manuscript in preparation

FROM π N AND NN TO A=4 WITH CHIRAL EFT AND ERROR ANALYSIS

CHIRAL EFT FOR NUCLEAR INTERACTIONS

Chiral EFT

- Systematic low-energy expansion: $(q/\Lambda_{\chi})^{\nu}$
- Connects several sectors: πN , NN, NNN, j_N
- (Unknown) short-range physics included as contact interactions.
- LECs need to be fitted to data.

 $\chi^2\left(\vec{p}\right) = \sum_{i} \left(\frac{O_i^{\text{theo}}\left(\vec{p}\right) - O_i^{\text{exp}}}{\sigma_{\text{tot},i}}\right)$

CHIRAL EFT FOR NUCLEAR INTERACTIONS

Selected key results

• Non-local, 2NF up to N5LO

- D. R. Entem et al. PRC 91, 014002 (2015)

- R. Machleidt et al. Phys. Rep. 503 (2011)

Non-local, leading 3NF

- E. Epelbaum et al. PRC 66, 064001 (2002)

- K. Hebeler et al. PRC 91, 044001 (2015)

Non-local, sub-leading 3NF

- V. Bernard et al. PRC 77, 064004 (2008)
- V. Bernard et al. PRC 84, 054001 (2011)
- K. Hebeler et al. PRC 91, 044001 (2015)

• 4th-order πN scattering

- H. Krebs et al. PRC 85, 054006 (2015)

See Evgeny's presentation

CHIRAL NUCLEAR INTERACTIONS

Number of LECs

- Non-local, 2NF up to N3LO
 26 contacts
 4 c_i:s + 4 d_i:s
- Non-local, leading 3NF
 C_D, C_E
 3 c_i:s
- Non-local, subleading 3NF
 c_S, c_T

TOTAL:

41 parameters

4th-order πN scattering
 c_i:s + d_i:s

5 e_i:s

INPUT AND TECHNOLOGY

πN scattering

- WI08 database
- T_{lab} between 10-70 MeV
- N_{data} = 1347
- R. Workman et al. (2012)

NN scattering

- Granada '13 database
- T_{lab} between 0-290 MeV
- N_{data} = 4753 (np + pp)
- R. Navarro Pérez et al. (2013)

All 6000 residuals computed on 1 node in ~90 sec.

A=2,3 bound states

 ²H,³H,³He [binding energy, radius, Q(²H), ³H half life] On 1 node in ~10 sec

+ derivatives! (×2-20 cost)

Alternatively... theoretical analysis of data

πN scattering

Roy-Steiner analysis
 M. Hoferichter et al. (2015)

NN scattering

• Phase shifts from partial wave analysis

OPTIMIZATION STRATEGY

Low-energy constants (LECs) need to be fitted to experimental data.

$$\chi^2(\vec{p}) \equiv \sum_i \left(\frac{O_i^{\text{theo}}(\vec{p}) - O_i^{\text{expr}}}{\sigma_{\text{tot},i}}\right)^2 \equiv \sum_i r_i^2(\vec{p})$$

- Derivative-free optimization using POUNDerS was used in our earliest works
- More efficient minimization algorithms (Levenberg-Marquardt, Newton), and statistical error analysis require derivatives

$$\frac{\partial r_i}{\partial p_j}$$
 and $\frac{\partial^2 r_i}{\partial p_j \partial p_k}$

- Numerical derivation using finite differences is plagued by low numerical precision and is computationally costly.
- Instead, we use Automatic Differentiation (AD)

TOTAL ERROR BUDGET

- The total error budget is $\sigma_{\text{tot}}^2 = \sigma_{\text{exp}}^2 + \sigma_{\text{method}}^2 + \sigma_{\text{numerical}}^2 + \sigma_{\text{model}}^2$
- At a given chiral order v, the omitted diagrams should be of order

 $\mathcal{O}\left((Q/\Lambda_{\chi})^{\nu+1}\right)$

- Still needs to be converted to actual numbers σ_{model}
- We translate this EFT knowledge into an error in the scattering amplitudes

$$\sigma_{\text{model},x}^{(\text{amp})} = C_x \left(\frac{Q}{\Lambda_{\chi}}\right)^{\nu+1}, \quad x \in \{NN, \pi N\}$$

which is then propagated to an error in the observable.

OPTIMIZATION STRATEGY

Low-energy constants (LECs) need to be fitted to experimental data.

$$\chi^{2}\left(\vec{p}\right) \equiv \sum_{i} r_{i}^{2}\left(\vec{p}\right) = \sum_{j \in NN} r_{j}^{2}\left(\vec{p}\right) + \sum_{k \in \pi N} r_{k}^{2}\left(\vec{p}\right) + \sum_{l \in 3N} r_{l}^{2}\left(\vec{p}\right)$$

parameters that are allowed to vary:

minima at each stage (used as starting points for the next stage); (Λ =500 MeV)

$\begin{array}{c} c_1 \\ c_2 \\ c \end{array}$	-0.69(50) +3.0(14) 4.12(22)	2 per channel: 2	per channel:	Some cases with
$egin{array}{ccc} c_3 \ c_4 \ d_1 + d_2 \end{array}$	-4.12(32) +5.35(81) +6.22(44)	¹ S ₀ , ¹ P ₁ , ³ P ₀ , ³ P ₁ ,	³ P ₂ - ³ F ₂	2 c _D , c _E optima
$egin{array}{c} d_3 \ d_5 \ d_5 \ d_5 \end{array}$	-5.31(30) -0.46(18)	5 in the deuteron 4	in the deuteron	
$d_{14} - d_{15}$ e_{14} e_{15}	-11.00(42) -0.63(95) -7.7(26)	channel: cł	nannel:	
e_{16} e_{17}	+5.9(49) +2.1(18) -8.1(42)	³ S ₁ , ³ D ₁ , ³ S ₁ -	- ³ D ₁	

SCATTERING OBSERVABLES, ORDER-BY-ORDER (SIM)

FIRST PREDICTIONS (A=4)

ROY-STEINER ANALYSIS OF π N SCATTERING

- Physical values of the momentum transfer in NN scattering is much closer to subthreshold kinematics in πN scattering than to the physical region.
- Hoferichter et al. recently matched subthreshold parameters of πN scattering from a solution of Roy-Steiner equations to χ PT.
- We allow these results to determine the long-range dynamics of the nuclear force within our optimization framework
 [πN LECs and covariance matrix from PRL 115, 192301 (2015)].

ROY-STEINER ANALYSIS OF π N SCATTERING

- We still find multiple minima in the *NN* optimization.
- Keeping only the most promising one we perform the simultaneous optimization of the final stage replacing the optimization w.r.t. πN data with

$$2f(\vec{p}_{\pi N} - \vec{p}_{RS})^T C_{RS}^{-1}(\vec{p}_{\pi N} - \vec{p}_{RS})$$

We use f=1000 to stay close to the RS values for the ci:s.
Question: How to best combine experimental data with information from a theory analysis?

ROY-STEINER ANALYSIS OF π N SCATTERING

- A simultaneous optimization of this objective function leads to a good description on all *NN* and *NNN* data.
 - For instance $np \chi^2/datum = 3.5$.
- The LECs remain in the Roy-Steiner region (to $\sim 1\sigma$)
- Predictions for 4He still disagree with experiments
 - ▶ E(4He) = -29.4 MeV
 - R(4He) = 1.38 fm

STATISTICAL ERROR ANALYSIS

In a minimum there will be an uncertainty in the optimal parameter values p₀ given by the χ² surface.¹

- Approximate the objective function with a quadratic form in the vicinity of the optimum. Compute the hessian matrix.
- > Expand observables similarly, to second order

$$\mathcal{O}(\mathbf{p_0} + \Delta \mathbf{p}) - \mathcal{O}(\mathbf{p_0}) \approx (\Delta \mathbf{p}^T) \mathbf{J}_{\mathcal{O}} + \frac{1}{2} (\Delta \mathbf{p}^T) \mathbf{H}_{\mathcal{O}} (\Delta \mathbf{p})$$

The covariance between two observables is then

 $\operatorname{Cov}(\mathcal{O}_A, \mathcal{O}_B) \approx \mathbf{J}_{\mathcal{O}_A}^T \operatorname{Cov}(\mathbf{p_0}) \mathbf{J}_{\mathcal{O}_B} + \operatorname{second} \operatorname{order}$

HESSIAN UNCERTAINTY QUANTIFICATION

	LOsim	NLOsim	NNLOsim	N3LOsim	Exp.
$E(^{2}\mathrm{H})$	-2.223	$-2.224^{(+1)}_{(-6)}$	$-2.224^{(+0)}_{(-1)}$	$-2.225^{(+1)}_{(-2)}$	-2.225
$E(^{3}\mathrm{H})$	-11.43	$-8.268^{(+26)}_{(-38)}$	$-8.482^{(+26)}_{(-30)}$	-8.482(28)	-8.482(28)
$E(^{3}\mathrm{He})$	-10.43	$-7.528^{(+20)}_{(-31)}$	$-7.717^{(+17)}_{(-21)}$	-7.717(19)	-7.718(19)
$E(^{4}\mathrm{He})$	-40.38(1)	$-27.44^{(+13)}_{(-15)}$	$-28.24^{(+9)}_{(-11)}$	-29.75(18)	-28.30(11)
$r_{\rm pt-p}(^{2}{\rm H})$	+1.912	$+1.972^{(+0)}_{(-2)}$	$+1.966^{(+0)}_{(-1)}$	+1.977(1)	+1.976(1)
$r_{\rm pt-p}(^{3}{\rm H})$	+1.292	$+1.614^{(+2)}_{(-3)}$	+1.581(2)	+1.590(2)	+1.587(41)
$r_{\rm pt-p}(^{3}{\rm He})$	+1.368	+1.791(3)	+1.761(2)	+1.760(2)	+1.766(13)
$r_{\rm pt-p}(^{4}{\rm He})$	+1.080	+1.482(3)	+1.445(3)	+1.407(5)	+1.455(7)
$E_A^1(^3\mathrm{H})$	_	_	+0.6848(11)	+0.6848(11)	+0.6848(11)
$D(^{2}\mathrm{H})$	+7.807	$+2.876^{(+85)}_{(-82)}$	$+3.381^{(+46)}_{(-45)}$	$+8.682^{(+96)}_{(-99)}$	_
$Q(^{2}\mathrm{H})$	+0.3030	$+0.2589^{(+17)}_{(-19)}$	+0.2623(8)	+0.2897(7)	+0.270(11)
$a_{nn}^{ m N}$	-26.04(8)	$-18.95^{(+38)}_{(-41)}$	$-19.28^{(+74)}_{(-80)}$	$-19.50^{(+79)}_{(-89)}$	-18.95(40)
$a_{np}^{ m N}$	-25.58(8)	$-23.60^{(+10)}_{(-13)}$	-23.83(11)	$-23.75^{(+3)}_{(-6)}$	-23.71
a^C_{pp}	-7.579(6)	$-7.799^{(+1)}_{(-3)}$	-7.811(1)	$-7.812^{(+2)}_{(-6)}$	-7.820(3)
$r_{nn}^{ m N}$	+1.697(1)	$+2.752^{(+7)}_{(-8)}$	+2.793(14)	+2.785(15)	+2.75(11)
$r_{np}^{ m N}$	+1.700(1)	+2.648(3)	+2.686(2)	+2.683(2)	+2.750(62)
r^{C}_{pp}	+1.812(1)	+2.704(3)	+2.758(2)	+2.755(2)	+2.790(14)

LAGRANGE MULTIPLIER

- The hessian UQ relies on a quadratic shape of the χ^2 -surface.
- The local minima of our χ^2 -surface are often very flat in some directions. Curvature is dominated by fourth-order terms.
- A possible solution: Lagrange multiplier optimization:

COMPARISON: HESSIAN UQ VS LAGRANGE-MULTIPLIER UQ

see also B. Carlsson et al., Phys. Rev. C 95 (2017) 034002

EXPLORING FURTHER SYSTEMATIC UNCERTAINTIES

- So far, all results have been obtained with a non-local regulator with cutoff Λ =500 MeV.
 - A subset of systematic uncertainties can be probed by varying Λ .
- Reoptimizing with different Λ (450-575 MeV) will give us a family of models.
- All of them will reproduce the same few-body physics.

SYSTEMATIC UNCERTAINTIES

CONCLUSION

SUMMARY (MAINLY FOR PHYSICISTS)

- There are roughly 100 local minima when the non-local N3LO NN+NNN interaction is optimized w.r.t. A=2,3 data.
 - Typically, the NN and πN chi2/datum is 2 across the board.
 - The best few (2-4) candidate(s) predict the E(4He) within 2 MeV, however the radii are too small.
- In few-nucleon calculations, the non-local 3N-interaction is not a small perturbation, compared to N2LO,
- πN coupling constants are of expected size.
 - However, they are very poorly constrained from πN data alone.
 - When fitted simultaneously, c3 c4 deviate significantly from the values obtained when fitted w.r.t. πN scattering data.
- Lagrangian multiplier optimization and UQ for nonquadratic cases. No need for derivatives.

OUTLOOK

- The inclusion of more data in the objective function requires other approaches to the optimization problem needed.
 (See also Andreas' presentation.)
- The frequentist approach does not offer an easy and transparent method for handling systematic uncertainties or imposing prior knowledge.
- Bayesian parameter estimation is advantageous, but costly.
 - avoiding the need to 'judge', a priori, what data can be included in order to safely avoid overfitting.
 - not obvious whether local minima will vanish.
 - offers a viable approach to include prior knowledge of certain parameters from Roy-Steiner analysis.
- Investigate other chiral EFT power-counting schemes.
 (See also Andreas' presentation.)