Uncertainty quantification of chiral effective field theory

Andreas Ekström

UNIVERSITY OF TECHNOLOGY

Information and statistics in nuclear experiment and theory (ISNET-5), York, Nov 6-9, 2017

Acknowledgements

Bijaya Acharya, Mainz Sonia Bacca, Mainz Nir Barnea, Jerusalem Boris Carlsson, Chalmers Nir Nevo Dinur, TRIUMF Christian Forssen, Chalmers Gaute Hagen, ORNL Javier Hernandez, Mainz Chen Ji, CCNU Titus Morris, UT Thomas Papenbrock, UT Lucas Platter, UT Hans Salomonsson, Chalmers Peter Schwartz, UT Muhammad Azam Sheikh, Chalmers

also thanks to: Hermann Krebs, Bochum Kai Hebeler, Darmstadt Gustav Jansen, ORNL

Truncation errors

deltafull vs deltaless

Optimization

Bayesian optimization

Combining errors

What can they tell us?

Truncation errors

deltafull vs deltaless

Optimization

Bayesian optimization

Combining errors

What can they tell us?

Truncation errors

deltafull vs deltaless

How to handle expensive black boxes?

Optimization

Bayesian optimization

Combining errors

Truncation errors -

deltafull vs deltaless

How to handle expensive black boxes?

What can they tell us?

Optimization

Bayesian optimization

How to do this?

Combining errors

Overview

Nuclear physics spans a broad scientific scope. We would like to understand the origin, stability, and evolution of subatomic matter; how it organizes itself and what phenomena emerge...

Question: How does the nuclear chart emerge from QCD?

Overview

Nuclear physics spans a broad scientific scope. We would like to understand the origin, stability, and evolution of subatomic matter; how it organizes itself and what phenomena emerge...

Question: How does the nuclear chart emerge from QCD?

$$\sum_{i=1}^{A} \frac{p_i^2}{2m_i} + \sum_{\substack{i < j=1 \\ \text{chiral effective field theory}}}^{A} V_{ij} + \sum_{\substack{i < j < k=1 \\ \text{chiral effective field theory}}}^{A} W_{ijk} |\Psi_A\rangle = E|\Psi_A\rangle$$

Truncation errors deltafull vs deltaless

Chiral effective field theory

Nucleons interact via a potential built from perturbative pion contributions, and **indirectly** everything else.

Chiral effective field theory

Nucleons interact via a potential built from perturbative pion contributions, and **indirectly** everything else.

$$x_{\star} = \underset{x}{\operatorname{argmin}} \ \chi^2(x)$$

B. D. Carlsson et al. Phys. Rev. X 6, 011019 (2016)A. Eksröm et al. Phys. Rev. Lett. 110, 192502 (2013)

partial-wave NN scattering **phase shifts** of the Granada group up to 200 MeV scattering energy in the laboratory system. R. Navarro-Perez et al, Phys. Rev. C 88, 064002 (2013).

$$x_{\star} = \underset{x}{\operatorname{argmin}} \ \chi^2(x)$$

B. D. Carlsson et al. Phys. Rev. X 6, 011019 (2016)A. Eksröm et al. Phys. Rev. Lett. 110, 192502 (2013)

partial-wave NN scattering **phase shifts** of the Granada group up to 200 MeV scattering energy in the laboratory system. R. Navarro-Perez et al, Phys. Rev. C 88, 064002 (2013).

Sub-leading pi-N LECs precisely determined in recent **Roy-Steiner analysis.**

D. Siemens et al. Physics Letters B 770 (2017) 27-34

$$\Delta-\text{full}$$

$$c_{1} = -0.74(2)$$

$$c_{2} = -0.49(17)$$

$$c_{3} = -0.65(22)$$

$$c_{4} = +0.96(11)$$

$$h_{A} = 1.40 \pm 0.05$$

$$\Delta-\text{less}$$

$$c_{1} = -0.74(2)$$

$$c_{2} = +1.81(3)$$

$$c_{3} = -3.61(3)$$

$$c_{4} = +2.44(3)$$

 $x_{\star} = \operatorname{argmin} \chi^2(x)$

B. D. Carlsson et al. Phys. Rev. X 6, 011019 (2016)A. Eksröm et al. Phys. Rev. Lett. 110, 192502 (2013)

partial-wave NN scattering **phase shifts** of the Granada group up to 200 MeV scattering energy in the laboratory system. R. Navarro-Perez et al, Phys. Rev. C 88, 064002 (2013).

Sub-leading pi-N LECs precisely determined in recent **Roy-Steiner analysis.**

D. Siemens et al. Physics Letters B 770 (2017) 27-34

Determined from **NCSM** E_{gs}(⁴He) && R_{pt-p}(⁴He) n.b. only relevant at NNLO

$$\Delta - \text{full}$$

$$c_1 = -0.74(2)$$

$$c_2 = -0.49(17)$$

$$c_3 = -0.65(22)$$

$$c_4 = +0.96(11)$$

$$h_A = 1.40 \pm 0.05$$

$$\dots$$

$$\Delta - \text{less}$$

$$c_1 = -0.74(2)$$

$$c_2 = +1.81(3)$$

$$c_3 = -3.61(3)$$

$$c_4 = +2.44(3)$$

Estimating truncation errors

We truncate the chiral expansion at some finite order k

$$X = X_0 \sum_{n=0}^{\infty} c_n Q^n$$
 Typically, $\{c_n\} \sim \mathcal{O}(1)$

Question: how to estimate the error in X due to truncation (k) in the EFT expansion, given explicit values for the (natural) coefficients c_1, \ldots, c_k ?

$$X = X_0(c_0Q^0 + \dots c_kQ^k) + X_0(\underbrace{c_{k+1}Q^{k+1} + \dots}_{\Delta_k})$$

That is, we seek $P(\Delta_k | c_0, \ldots, c_k)$

Up to factors of order unity, we can estimate the truncation error (degree of belief, evidential probability, ...)

 $P(\Delta_k^{(1)}|c_0,\ldots,c_k) \quad \sigma_X(NjLO) = X_0 Q^{j+2} \max(|c_0|,|c_1|,\ldots,|c_{j+1}|)$

$$Q = \begin{pmatrix} p \\ \overline{\Lambda_b} \end{pmatrix} \quad \begin{aligned} p = \begin{cases} M_{\pi} \\ k_F \\ \Lambda_b = 500 \, \text{MeV} \end{aligned}$$

Up to factors of order unity, we can estimate the truncation error (degree of belief, evidential probability, ...)

$$P(\Delta_k^{(1)}|c_0,\ldots,c_k) \quad \sigma_X(NjLO) = X_0 Q^{j+2} \max(|c_0|,|c_1|,\ldots,|c_{j+1}|)$$

Optimization Bayesian optimization

Bayesian Optimization

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

Bayesian Optimization

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

Bayesian Optimization

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

usually we know (guess) parameter domain

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

BayesOpt: Setup a prior probabilistic belief about the function. Typically a Gaussian process. $p(f) = \mathcal{GP}(f; \mu, K)$

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

BayesOpt: Setup a prior probabilistic belief about the function. Typically a Gaussian process. $p(f) = \mathcal{GP}(f;\mu,K)$

Confront the prior with some "data", i.e. x & y values. (at least two points) $\mathcal{D}_{1:n} = [x_1, x_2, \dots x_n; f_1, f_2, \dots f_n]$

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

BayesOpt: Setup a prior probabilistic belief about the function. Typically a Gaussian process. $p(f) = \mathcal{GP}(f;\mu,K)$

Confront the prior with some "data", i.e. x & y values. (at least two points) $\mathcal{D}_{1:n} = [x_1, x_2, \dots x_n; f_1, f_2, \dots f_n]$

Update the posterior probabilistic description of the unknown function $p(f|\mathcal{D}_{1:n}) = \mathcal{GP}(f; \mu_{f|\mathcal{D}_{1:n}}, K_{f|\mathcal{D}_{1:n}})$

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

BayesOpt: Setup a prior probabilistic belief about the function. Typically a Gaussian process. $p(f) = \mathcal{GP}(f;\mu,K)$

Confront the prior with some "data", i.e. x & y values. (at least two points) $\mathcal{D}_{1:n} = [x_1, x_2, \dots x_n; f_1, f_2, \dots f_n]$

Update the posterior probabilistic description of the unknown function $p(f|\mathcal{D}_{1:n}) = \mathcal{GP}(f; \mu_{f|\mathcal{D}_{1:n}}, K_{f|\mathcal{D}_{1:n}})$

Decide where to sample next, i.e. determine x_{n+1}

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

BayesOpt: Setup a prior probabilistic belief about the function. Typically a Gaussian process. $p(f) = \mathcal{GP}(f;\mu,K)$

Confront the prior with some "data", i.e. x & y values. (at least two points) $\mathcal{D}_{1:n} = [x_1, x_2, \dots x_n; f_1, f_2, \dots f_n]$

Update the posterior probabilistic description of the unknown function $p(f|\mathcal{D}_{1:n}) = \mathcal{GP}(f; \mu_{f|\mathcal{D}_{1:n}}, K_{f|\mathcal{D}_{1:n}})$

Decide where to sample next, i.e. determine x_{n+1}

Augment the data $\mathcal{D}_{1:n+1}$ & update the Gaussian process

Scenario: the function f that we wish to minimize is expensive to evaluate, and its exact functional form is unavailable for whatever reason.

No more information is available to us.

BayesOpt: Setup a prior probabilistic belief about the function. Typically a Gaussian process. $p(f) = \mathcal{GP}(f;\mu,K)$

Confront the prior with some "data", i.e. x & y values. (at least two points) $\mathcal{D}_{1:n} = [x_1, x_2, \dots x_n; f_1, f_2, \dots f_n]$

Update the posterior probabilistic description of the unknown function $p(f|\mathcal{D}_{1:n}) = \mathcal{GP}(f; \mu_{f|\mathcal{D}_{1:n}}, K_{f|\mathcal{D}_{1:n}})$

Decide where to sample next, i.e. determine x_{n+1}

-Augment the data ${\cal D}_{1:n+1}$ & update the Gaussian process

Χ

Χ

Expected Improvement (EI) acquisition function

utility function: $u(x) = \max(0, f_{\min} - f(x))$

We need to find the argmax of the acquisition function

$$\begin{aligned} x_{n+1} &= \operatorname{argmax} \mathcal{A}(x) \\ \mathcal{A}(x) &= \langle u(x) \rangle = \int_{f(x)} \max(0, f_{\min} - f(x)) p(f(x) | \mathcal{D}_{1:n}) \, df \\ &= (f_{\min} - \mu(x)_{\mathcal{D}}) \Phi\left(\frac{f_{\min} - \mu(x)_{\mathcal{D}}}{\sigma(x)_{\mathcal{D}}}\right) + \sigma(x)_{\mathcal{D}} \mathcal{N}\left(\frac{f_{\min} - \mu(x)_{\mathcal{D}}}{\sigma(x)_{\mathcal{D}}}; 0, 1\right) \end{aligned}$$

Exploitation

sampling areas of likely improvement

Exploration

sampling areas of high uncertainty

Expected Improvement (EI) acquisition function

utility function: $u(x) = \max(0, f_{\min} - f(x))$

which one to use?

We need to find the argmax of the acquisition function

$$\begin{aligned} x_{n+1} &= \operatorname{argmax} \mathcal{A}(x) \\ \mathcal{A}(x) &= \langle u(x) \rangle = \int_{f(x)} \max(0, f_{\min} - f(x)) p(f(x) | \mathcal{D}_{1:n}) \, df \\ &= (f_{\min} - \mu(x)_{\mathcal{D}}) \Phi\left(\frac{f_{\min} - \mu(x)_{\mathcal{D}}}{\sigma(x)_{\mathcal{D}}}\right) + \sigma(x)_{\mathcal{D}} \mathcal{N}\left(\frac{f_{\min} - \mu(x)_{\mathcal{D}}}{\sigma(x)_{\mathcal{D}}}; 0, 1\right) \end{aligned}$$

Exploitation

sampling areas of likely improvement

Exploration

sampling areas of high uncertainty

Expected Improvement (EI) acquisition function

utility function: $u(x) = \max(0, f_{\min} - f(x))$

which one to use?

We need to find the argmax of the acquisition function

$$\begin{aligned} x_{n+1} &= \operatorname{argmax} \mathcal{A}(x) \\ \mathcal{A}(x) &= \langle u(x) \rangle = \int_{f(x)} \max(0, f_{\min} - f(x)) p(f(x) | \mathcal{D}_{1:n}) \, df \\ &= (f_{\min} - \mu(x)_{\mathcal{D}}) \Phi\left(\frac{f_{\min} - \mu(x)_{\mathcal{D}}}{\sigma(x)_{\mathcal{D}}}\right) + \sigma(x)_{\mathcal{D}} \mathcal{N}\left(\frac{f_{\min} - \mu(x)_{\mathcal{D}}}{\sigma(x)_{\mathcal{D}}}; 0, 1\right) \end{aligned}$$

Exploitation

sampling areas of likely improvement

Exploration

sampling areas of high uncertainty Too much => wasted iterations

DeflectedCorrugatedSpring

Χ

N-dim more challenging $f(x_1, x_2)$ $^{-1}$ +2 X_1

N-dim more challenging

30

30

Langermann function

100 iterations Acq.: Expected Improvement GP-kernel: **Squared exponential**

Doesn't pick up on the structured details of the Langermann function

100 iterations Acq.: Expected Improvement GP-kernel: Matern 3/2 (exponential * linear)

> A Matern 3/2 kernel does at better job, although in this run it does not find the global minimum.

NN scattering at NNLO(500)

 ${x}$

Proton-Neutron scattering data < 75 MeV R. Navarro-Perez et al, Phys. Rev. C 88, 064002 (2013).

Model has 12 LECs/parameters that we vary $x = [\tilde{C}_{1S0}^{(np)}, \tilde{C}_{3S1}, C_{1S0}, C_{3S1}, C_{E1}, C_{1P1}, C_{3P0}, C_{3P1}, C_{3P2}]$

$$x \in X$$

parameter domain will matter!

NN scattering at NNLO(500)

NN LO g_A $C_{S,T}$ NLO $f_{C_{1,...,7}}$ $f_{C_{1,...,7}}$ $f_{C_{1,...,7}}$ $f_{C_{1,...,7}}$ $f_{C_{1,...,7}}$ $f_{C_{1,...,7}}$ $f_{C_{1,...,7}}$ $f_{C_{1,...,7}}$

Proton-Neutron scattering data < 75 MeV R. Navarro-Perez et al, Phys. Rev. C 88, 064002 (2013). Model has 12 LECs/parameters that we vary

 $x = [\tilde{C}_{1S0}^{(np)}, \tilde{C}_{3S1}, C_{1S0}, C_{3S1}, C_{E1}, C_{1P1}, C_{3P0}, C_{3P1}, C_{3P2}]$

$$x \in X$$

parameter domain will matter!

Let's try three different ones.				X1: "informed" 5 X2: "ignorant" ir X3: "crazy"		5 random drav in each doma	random draws each domain	
$\begin{array}{c c} X \\ \hline X_1 \\ X_2 \\ X_3 \\ \end{array}$	$\frac{\tilde{C}_{1S0}^{(np)}}{(-0.2, -0.1)} \\ (-5.0, +5.0) \\ (-5.0, +5.0)$		$\begin{array}{c} C_{1S0} \\ \hline (-0.2, -0.1) \\ (-5.0, +5.0) \\ (-5.0, +5.0) \end{array}$	$\begin{array}{c} C_{3S1} - C_{3P2} \\ \hline (-1, +1) \\ (-5, +5) \\ (-5, +5) \end{array}$	$\begin{array}{c} c_1 \\ \hline (-0.76, - \\ (-0.76, - \\ (-5.00, + \end{array}) \end{array}$	$\begin{array}{c} c_3\\ \hline 0.72) & (-3.66, -3.56)\\ 0.72) & (-3.66, -3.56)\\ 5.00) & (-5.00, +5.00) \end{array}$		

 $x_{\star} = \operatorname{argmin} \chi^2(x)$

 \mathcal{X}

NN scattering at NNLO(500)

Proton-Neutron scattering data < 75 MeV R. Navarro-Perez et al, Phys. Rev. C 88, 064002 (2013).

Model has 12 LECs/parameters that we vary $x = [\tilde{C}_{1S0}^{(np)}, \tilde{C}_{3S1}, C_{1S0}, C_{3S1}, C_{E1}, C_{1P1}, C_{3P0}, C_{3P1}, C_{3P2}]$

$$x_{\star} = \underset{x}{\operatorname{argmin}} \ \chi^2(x)$$

How many random starting points typically 'needed' in N-dim space? (2N, Nlog(N), ... ?)

Let's try three different ones.

X1: "informed" X2: "ignorant" X3: "crazy"

5 rendom draws in each domain

MORE STATS NEEDED

X	$C_{1S0}^{(np)}$	C_{3S1}	C_{1S0}	$C_{3S1} - C_{3P2}$	c_1	c_3	c_4
X_1	(-0.2, -0.1)	(+2, +3)	(-0.2, -0.1)	(-1, +1)	(-0.76, -0.72)	(-3.66, -3.56)	(+2.41, +2.47)
X_2	(-5.0, +5.0)	(-5,+5)	(-5.0, +5.0)	(-5, +5)	(-0.76, -0.72)	(-3.66, -3.56)	(+2.41, +2.47)
X_3	(-5.0, +5.0)	(-5, +5)	(-5.0, +5.0)	(-5, +5)	(-5.00, +5.00)	(-5.00, +5.00)	(-5.00, +5.00)

5 random starting points in each parameter domain

5 random starting points in each parameter domain

POUNDERS:

- Rather little tuning necessary (mainly initial step length).
- Scales rather well with dimensionality (at least computationally)
- Not much exploration.
- Sensitive to starting point.
- BayesOpt:
 - **Exploration Exploitation benefits.**
 - Seems to be less sensitive to starting point.
 - Much tuning (Acuisition func, kernel, ...). Determines success. Poor scaling with dimensionality (subspace projection?)

POUNDERS:

- Rather little tuning necessary (mainly initial step length).
- Scales rather well with dimensionality (at least computationally)
- Not much exploration.
- Sensitive to starting point.
- BayesOpt:
 - **Exploration Exploitation benefits.**
 - Seems to be less sensitive to starting point.
 - Much tuning (Acuisition func, kernel, ...). Determines success. Poor scaling with dimensionality (subspace projection?)

Combining errors muonic deuterium

Suppose that I cannot do an 'end-to-end' calculation of my observable.

Suppose that I cannot do an 'end-to-end' calculation of my observable.

Reasons: (A) I have all the pieces, it's just computationally expensive (impossible ?) (B) I don't have all the pieces (e.g. incorporating effects from other sources).

Suppose that I cannot do an 'end-to-end' calculation of my observable.

Reasons: (A) I have all the pieces, it's just computationally expensive (impossible ?) (B) I don't have all the pieces (e.g. incorporating effects from other sources).

Examples: (A) Deltafull description of symmetric nuclear matter.

(B) Two-photon exchange corrections in muonic deuterium.

Suppose that I cannot do an 'end-to-end' calculation of my observable.

Reasons: (A) I have all the pieces, it's just computationally expensive (impossible ?) (B) I don't have all the pieces (e.g. incorporating effects from other sources).

Examples: (A) Deltafull description of symmetric nuclear matter. (B) Two-photon exchange corrections in muonic deuterium.

The inelastic contributions ('nuclear polariztion' / Two-Photon Exchange [TPE]) comes from nuclear theory. It is currently the limiting uncertainty in the extraction of the charge radius from laser spectroscopy of the Lamb shift.

$$\delta_{\mathrm{exp}}^{\mathrm{LS}} = \delta_{\mathrm{QED}}^{\mathrm{LS}} + \delta_{\mathrm{TPE}}^{\mathrm{LS}} - \delta_{\mathrm{rad.-dep.}}^{\mathrm{LS}} \cdot r_d^2$$

 $r_d(\mu - d) = 2.12562(13)_{\exp}(77)_{\text{theo}} \text{ fm} = 2.12562(78) \text{ fm}$

 $r_d(\mu - d) = 2.12562(13)_{\exp}(77)_{\text{theo}} \text{ fm} = 2.12562(78) \text{ fm}$ $\sigma_{\text{theo}} \text{ is } 98\% \text{ TPE}$

E	How to deal with combined error estimates? Experts have 'fingerspitzengefuhl' More important when we 'deliver numbers' to another	W and a) - va)ff - cati ∩a-ez	<i>Ie follow suit</i> dd in quadratur ustical errors (sr ariation variation on errors a'la Ek xpansion (small) ansion (small)	re: mall)	$ \begin{array}{c} N^k LO_{EKM} \\ N^k LO_{EMN} \\ N^k LO_{sim} \end{array} $
TPE [me	-1.70 Important physics points:				Theory Experiment
Ş	 We have not resolved the deuteron puzzle This would require a very large (~-2.2 meV) TPE 		ContributionNuclear physics (syst)Nuclear physics (stat) η -expansionSingle-nucleonAtomic physicsTotal	Uncertainty in me +0.008 -0.011 ± 0.001 ± 0.005 ± 0.0102 ± 0.0172 ± 0.022	<u></u>
	 We present data and figures for theory error sources. 	all	$\mathbf{N}^{3}\mathbf{LO}$	-0.024	CREMA

69

O. J. Hernandez et al, arXiv 1711.01199 (2017)

Summary

- Approximate DOB intervals support the *expected improved convergence for deltafull EFT.*
- Bayesian optimization could be useful for optimizing interactions from expensive ab initio calculations.
- Several sources of uncertainty very common. How can we 'best' combine/report a conglomerated value?

Thanks for your attention!

Beyer et al., Science 358, 79–85 (2017)

Stability with respect to alpha breakup

Several recent calculations observe that, contrary to well-established experiments,

¹⁶O is not stable against decay into 4α particles

B. D. Carlsson et al. Phys. Rev. X 6, 011019 (2016)

- Lattice EFT calculations (improved LO interaction "A") (observed for ⁸Be, ¹²C, ¹⁶O, ²⁰Ne) S. Elhatisari et al. Phys. Rev. Lett. **117**, 132501 (2016)
- Pionless EFT calculations at LO L. Contessit et al. arXiv:1701.06516 [nucl-th] (2017)
- Chiral EFT calculations using optimized NNLOsim
- Δ-less chiral EFT calculations LO, NLO, NNLO
 A. Ekström et al. arXiv:1707.09028 [nucl-th] (2017)

The Δ -full NLO, NNLO interactions yield ¹⁶O (and ⁴⁰Ca) stable with respect to α breakup A. Ekström et al. arXiv:1707.09028 [nucl-th] (2017)

Coupled-cluster calculations in the Lambda-CCSD(T) formulation, hw=16, E3max=16hw, 3NF-NO2b HF

TABLE II. Binding energies (E) (in MeV), charge radii (in fm), proton point radii (in fm), neutron point radii (in fm), and neutron skin (in fm) for ⁸He, ^{16,22,24}O, and ^{40,48}Ca at Δ NLO and Δ NNLO, and compared to experiment.

		E			$R_{ m ch}$			$R_{\rm p}$	_	R _n	R	skin
	Δ NLO	Δ NNLO	Exp. [65]	Δ NLO	Δ NNLO	Exp. [51]	Δ NLO	Δ NNLO	Δ NLO	Δ NNLO	Δ NLO	Δ NNLO
⁸ He	27.5	27.0	31.40	1.90	1.97	1.924(31)	1.77	1.85	2.63	2.70	0.85	0.85
^{16}O	120.3	117.0	127.62	2.63	2.73	2.699(5)	2.49	2.61	2.47	2.58	-0.02	-0.03
^{22}O	146.2	145.4	162.04	2.66	2.77		2.54	2.66	2.88	3.00	0.34	0.34
^{24}O	152.2	151.6	168.96	2.70	2.81		2.59	2.71	3.11	3.22	0.52	0.51
40 Ca	312.2	309.1	342.05	3.41	3.55	3.478(2)	3.31	3.45	3.26	3.40	-0.05	-0.05
⁴⁸ Ca	373.4	373.8	416.00	3.45	3.56	3.477(2)	3.36	3.47	3.51	3.62	0.15	0.15

- ΔNNLO predicts E and R_{ch} rather well.
- Neutron skin in ⁴⁸Ca consistent with estimated ranges: 0.14–0.20 fm from E-dipole polarizability & ab intio predictions 0.12-0.15 fm
- Low-lying states in ¹⁷O in good agreement with data.
- ²⁵O is bound at ΔNNLO with respect to ²⁴O by about 0.5 MeV
- 2+ state in ²⁴O is too low compared to experiment.

$$E \int O = \alpha_D E$$
$$\alpha_D = 2\alpha \int \frac{R(w)}{\omega} d\omega$$
$$R_{\rm skin} = R_n - R_p$$

Phase shifts, truncation errors

Peripheral NN-phase shifts

H. Krebs et al. Eur. Phys. J. A 32, 127-137 (2007)

A. Ekström et al. arXiv:1707.09028 [nucl-th] (2017)

Saturation in nuclear matter

Nucleonic matter is interesting for several reasons:

- The equation of state (EoS) of neutron matter, for instance, determines properties of supernova explosions and of neutron stars.
- It largely determines neutron radii in atomic nuclei and the symmetry energy. Which in turn is related to the difference between proton and neutron radii in atomic nuclei.
- Likewise, the compressibility of nuclear matter is probed in giant dipole excitations.
- The saturation point of nuclear matter determines bulk properties of atomic nuclei, and is therefore an important constraint for nuclear energy-density functionals and mass models.

Varying the cutoff

Symmetry energy

 $22.3 \lesssim S \lesssim 33.3 \,{
m MeV}$

A. Ekström et al. arXiv:1707.09028 [nucl-th] (2017)

LECs: Numerical values

LEC	LO(450)	$\Delta NLO(450)$	$\Delta NNLO(450)$	LO(500)	$\Delta NLO(500)$	$\Delta \text{NNLO}(500)$
c_1	—	_	-0.74	—	_	-0.74
c_2	—	_	-0.49	—	_	-0.49
c_3	—	_	-0.65	—	_	-0.65
c_4	—	_	+0.96	_	_	+0.96
$ ilde{C}^{(nn)}_{{}^1S_0}$	-0.112927	-0.310511	-0.338023	-0.108522	-0.310256	-0.338223
$ ilde{C}_{^1S_0}^{(nec{p})}$	-0.112927	-0.310712	-0.338139	-0.108522	-0.310443	-0.338320
$ ilde{C}_{^1S_0}^{(pec{p})}$	-0.112927	-0.309893	-0.337137	-0.108522	-0.309618	-0.337303
$\tilde{C}_{{}^3S_1}$	-0.087340	-0.197951	-0.229310	-0.068444	-0.191013	-0.221721
$C_{{}^{1}S_{0}}$	—	+2.391638	+2.476589	_	+2.395375	+2.488019
$C_{{}^{3}S_{1}}$	—	+0.558973	+0.695953	_	+0.539378	+0.675353
$C_{1P_{1}}$	—	+0.004813	-0.028541	—	+0.015247	-0.012651
$C_{^{3}P_{0}}$	—	+0.686902	+0.645550	—	+0.727049	+0.698454
C_{3P_1}	—	-1.000112	-1.022359	—	-0.951417	-0.937264
$C_{^{3}P_{2}}$	—	-0.808073	-0.870203	—	-0.793621	-0.859526
$C_{{}^{3}S_{1}-{}^{3}D_{1}}$	_	+0.362094	+0.358330	_	+0.358443	+0.354479
c_D	—	—	+0.790	—	_	-0.820
c_E	—	_	+0.017	_	_	-0.350

Three-nucleon forces

A=2,3,4 energies & radii

	LO	ΔNLO	Δ NNLO	Exp.	$\Lambda =$	450	MeV	
$E(^{2}\mathrm{H})$	2.01(15)	2.10(5)	2.16(2)	2.2245				
$R_{ m ch}(^2{ m H})$	2.16(16)	1.157(7)	2.1486(21)	2.1421(88)				
$P_{\rm D}(^2{ m H})$	7.15(3.51)	3.63(97)	3.74(27)	_				
$Q(^{2}\mathrm{H})$	0.322(41)	0.277(11)	0.277(3)	0.27^{a}				
$E(^{3}\mathrm{H})$	10.91(2.38)	8.65(62)	8.53(17)	8.48				
$R_{ m ch}(^{3}{ m H})$	1.52(23)	1.72(6)	1.74(2)	1.7591(363)				
$E(^{3}\text{He})$	9.95(2.21)	7.85(58)	7.73(16)	7.72				
$R_{\rm ch}(^{3}{\rm He})$	1.66(32)	1.94(8)	1.97(2)	1.9661(30)				
$E(^{4}\text{He})$	39.60(11.3)	29.32(2.83)	28.29(78)	28.30				
$R_{\rm ch}({}^{4}{\rm He})$	1.37(30)	1.63(7)	1.67(2)	1.6755(28)				
	LO	ΔNLO	Δ NNLO	Exp.	$\Lambda =$	500	MeV	
$E(^{2}\mathrm{H})$	LO 2.04(16)	Δ NLO 2.12(5)	$\frac{\Delta \text{NNLO}}{2.18(2)}$	Exp. 2.2245	$\Lambda =$	500	MeV	
$\overline{\begin{array}{c} E(^{2}\mathrm{H})\\ R_{\mathrm{ch}}(^{2}\mathrm{H}) \end{array}}$	LO 2.04(16) 2.15(16)	ΔNLO 2.12(5) 2.153(7)	Δ NNLO 2.18(2) 2.1459(19)	Exp. 2.2245 2.1421(88)	$\Lambda =$	500	MeV	
	$ LO 2.04(16) \\ 2.15(16) \\ 7.80(3.97) $	$\begin{array}{r} \Delta \rm NLO \\ 2.12(5) \\ 2.153(7) \\ 3.82(1.09) \end{array}$	Δ NNLO 2.18(2) 2.1459(19) 3.97(30)	Exp. 2.2245 2.1421(88)	$\Lambda =$	500	MeV	
$E(^{2}{ m H}) \ R_{ m ch}(^{2}{ m H}) \ P_{ m D}(^{2}{ m H}) \ Q(^{2}{ m H})$	$\begin{array}{r} \text{LO} \\ 2.04(16) \\ 2.15(16) \\ 7.80(3.97) \\ 0.317(42) \end{array}$	$\begin{array}{r} \Delta \mathrm{NLO} \\ 2.12(5) \\ 2.153(7) \\ 3.82(1.09) \\ 0.276(11) \end{array}$	Δ NNLO 2.18(2) 2.1459(19) 3.97(30) 0.276(3)	Exp. 2.2245 2.1421(88) - 0.27 ^a	$\Lambda =$	500	MeV	
$ \begin{array}{c} \hline E(^{2}\mathrm{H}) \\ R_{\mathrm{ch}}(^{2}\mathrm{H}) \\ P_{\mathrm{D}}(^{2}\mathrm{H}) \\ Q(^{2}\mathrm{H}) \\ \hline E(^{3}\mathrm{H}) \end{array} $	$\begin{array}{r} \text{LO} \\ 2.04(16) \\ 2.15(16) \\ 7.80(3.97) \\ 0.317(42) \\ 10.47(1.97) \end{array}$	$\begin{array}{r} \Delta \mathrm{NLO} \\ 2.12(5) \\ 2.153(7) \\ 3.82(1.09) \\ 0.276(11) \\ 8.91(43) \end{array}$	$\begin{array}{r} \Delta \mathrm{NNLO} \\ 2.18(2) \\ 2.1459(19) \\ 3.97(30) \\ 0.276(3) \\ 8.50(12) \end{array}$	Exp. 2.2245 2.1421(88) 0.27 ^a 8.48	$\Lambda =$	500	MeV	
$ \begin{array}{c} \hline E(^{2}{\rm H}) \\ R_{\rm ch}(^{2}{\rm H}) \\ P_{\rm D}(^{2}{\rm H}) \\ Q(^{2}{\rm H}) \\ \hline E(^{3}{\rm H}) \\ R_{\rm ch}(^{3}{\rm H}) \end{array} $	$\begin{array}{r} \text{LO} \\ 2.04(16) \\ 2.15(16) \\ 7.80(3.97) \\ 0.317(42) \\ 10.47(1.97) \\ 1.54(21) \end{array}$	$\begin{array}{r} \Delta \mathrm{NLO} \\ 2.12(5) \\ 2.153(7) \\ 3.82(1.09) \\ 0.276(11) \\ 8.91(43) \\ 1.71(5) \end{array}$	$\begin{array}{r} \Delta \mathrm{NNLO} \\ 2.18(2) \\ 2.1459(19) \\ 3.97(30) \\ 0.276(3) \\ 8.50(12) \\ 1.75(1) \end{array}$	$\begin{array}{r} \text{Exp.} \\ 2.2245 \\ 2.1421(88) \\ - \\ 0.27^{\text{a}} \\ 8.48 \\ 1.7591(363) \end{array}$	$\Lambda =$	500	MeV	
	$\begin{array}{r} \text{LO} \\ 2.04(16) \\ 2.15(16) \\ 7.80(3.97) \\ 0.317(42) \\ 10.47(1.97) \\ 1.54(21) \\ 9.50(1.80) \end{array}$	$\begin{array}{r} \Delta \text{NLO} \\ 2.12(5) \\ 2.153(7) \\ 3.82(1.09) \\ 0.276(11) \\ 8.91(43) \\ 1.71(5) \\ 8.11(40) \end{array}$	$\begin{array}{r} \Delta \text{NNLO} \\ 2.18(2) \\ 2.1459(19) \\ 3.97(30) \\ 0.276(3) \\ 8.50(12) \\ 1.75(1) \\ 7.70(11) \end{array}$	$\begin{array}{r} \text{Exp.} \\ 2.2245 \\ 2.1421(88) \\ - \\ 0.27^{\text{a}} \\ 8.48 \\ 1.7591(363) \\ 7.72 \end{array}$	$\Lambda =$	500	MeV	
	$\begin{array}{r} \text{LO} \\ 2.04(16) \\ 2.15(16) \\ 7.80(3.97) \\ 0.317(42) \\ 10.47(1.97) \\ 1.54(21) \\ 9.50(1.80) \\ 1.68(30) \end{array}$	$\begin{array}{r} \Delta \mathrm{NLO} \\ 2.12(5) \\ 2.153(7) \\ 3.82(1.09) \\ 0.276(11) \\ 8.91(43) \\ 1.71(5) \\ 8.11(40) \\ 1.92(7) \end{array}$	$\begin{array}{r} \Delta \mathrm{NNLO} \\ 2.18(2) \\ 2.1459(19) \\ 3.97(30) \\ 0.276(3) \\ 8.50(12) \\ 1.75(1) \\ 7.70(11) \\ 1.98(2) \end{array}$	$\begin{array}{r} \text{Exp.} \\ 2.2245 \\ 2.1421(88) \\ - \\ 0.27^{\text{a}} \\ 8.48 \\ 1.7591(363) \\ 7.72 \\ 1.9661(30) \end{array}$	$\Lambda =$	500	MeV	
$ \begin{array}{c} \hline E(^{2}\mathrm{H}) \\ R_{\mathrm{ch}}(^{2}\mathrm{H}) \\ P_{\mathrm{D}}(^{2}\mathrm{H}) \\ Q(^{2}\mathrm{H}) \\ \hline E(^{3}\mathrm{H}) \\ R_{\mathrm{ch}}(^{3}\mathrm{H}) \\ \hline E(^{3}\mathrm{He}) \\ \hline R_{\mathrm{ch}}(^{3}\mathrm{He}) \\ \hline R_{\mathrm{ch}}(^{3}\mathrm{He}) \\ \hline E(^{4}\mathrm{He}) \\ \hline \end{array} $	$\begin{array}{r} \text{LO} \\ 2.04(16) \\ 2.15(16) \\ 7.80(3.97) \\ 0.317(42) \\ 10.47(1.97) \\ 1.54(21) \\ 9.50(1.80) \\ 1.68(30) \\ 37.00(8.69) \end{array}$	$\begin{array}{r} \Delta \mathrm{NLO} \\ 2.12(5) \\ 2.153(7) \\ 3.82(1.09) \\ 0.276(11) \\ 8.91(43) \\ 1.71(5) \\ 8.11(40) \\ 1.92(7) \\ 30.70(2.38) \end{array}$	$\begin{array}{r} \Delta \text{NNLO} \\ 2.18(2) \\ 2.1459(19) \\ 3.97(30) \\ 0.276(3) \\ 8.50(12) \\ 1.75(1) \\ 7.70(11) \\ 1.98(2) \\ 28.31(65) \end{array}$	Exp. 2.2245 2.1421(88) - 0.27^{a} 8.48 1.7591(363) 7.72 1.9661(30) 28.30	$\Lambda =$	500	MeV	

^a CD-Bonn value [3]

Progress in ab initio calculations

Progress in ab initio calculations

Complementary methods agree

Same chiral interaction, but different many-body methods

A

NN-N3LO(500) + 3NF-N2LO(local-400) [λ = 1.88 fm⁻¹] 86

Uncertainty in the interaction

"Calculations are only as good as their input"

A. Ekström et al J. Phys. G: Nucl. Part. Phys. **42** 034003 (2015)

assumptions, assumptions,

1) Independence: $P(c_0, \dots, c_k | \bar{c}) = \prod_{i=0} P(c_i | \bar{c})$ where \bar{c} is a common upper bound, and $P(c_i | \bar{c}) = P(c_j | \bar{c}) \ \forall (i, j)$

2) Priors for the expansion coefficients: $P(c_i|\bar{c})$

Maximum entropy dictates that the least informative distribution is uniform.

k

$$P(\Delta_k | c_0, \dots, c_k) = \int_{-\infty}^{+\infty} P(\Delta_k | c_{k+1}, \dots) P(c_{k+1}, \dots | c_0, \dots, c_k) \, dc_{k+1} dc_{k+2} \dots$$

Following R. J. Furnstahl et al, PRC **92**, 024005 (2015) gives (Integrating in, marginalizing, and exploiting Bayes' theorem, ...)

Leading-term approximation: $\Delta_k \approx c_{k+1}Q^{k+1} \equiv \Delta_k^{(1)}$

$$P(\Delta_k^{(1)}|c_0,\dots,c_k) = \frac{\int_0^\infty P(c_{k+1}|\bar{c}) \prod_{i=0}^k P(c_i|\bar{c})P(\bar{c})d\bar{c}}{Q^{k+1} \prod_{i=0}^k P(c_i|\bar{c}')P(\bar{c}')d\bar{c}'}$$

Which can be evaluated explicitly for uniform priors. In fact, so can also the degree of belief integral

$$p\% = \int_{-d_k^{(p)}}^{+d_k^{(p)}} = P(\Delta_k^{(1)} | c_0, \dots, c_k) d\Delta_k^{(1)}$$
(not a Gaussian)

R. J. Furnstahl et al, PRC 92, 024005 (2015)

Interaction	BE	S _n	Δ	R _{ch}	R _W	S_{v}	L
NNLO _{sat}	404(3)	9.5	2.69	3.48	3.65	26.9	40.8
1.8/2.0 (EM)	420(1)	10.1	2.69	3.30	3.47	33.3	48.6
2.0/2.0 (EM)	396(2)	9.3	2.66	3.34	3.52	31.4	46.7
2.2/2.0 (EM)	379(2)	8.8	2.61	3.37	3.55	30.2	45.5
2.8/2.0 (EM)	351(3)	8.0	2.41	3.44	3.62	28.5	43.8
2.0/2.0 (PWA)	346(4)	7.8	2.82	3.55	3.72	27.4	44.0
Experiment	415.99	9.995	2.399	3.477			

100

Damavandi

Energy & charge radius

Energy & charge radius

G. Hagen, et al. PRC 89, 014319 (2014)

98

G. Hagen, et al. PRC 89, 014319 (2014)

99

G. Hagen, et al. PRC 89, 014319 (2014)

100

G. Hagen, et al. PRC 89, 014319 (2014)

100