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The Nuclear Hierarchy

= Hierarchy of degrees of freedom

= The physics of nuclei is based on
nucleons and densities of nucleons

= All approaches to nuclear structure are
phenomenological models!

* Nuclear density functional theory (DFT)

Built on effective nuclear energy density
functional (or interactions)

Densities of nucleons are basic degrees of
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The Realm of Nuclear DFT

Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory

DFT is the only “microscopic” theory
| for heavy nuclei and many applications
(fission, r-process, superheavies, etc.)
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Nuclear DFT for Dummies

System of independent particles = uncorrelated wave-function

Total energy is a functional of the density of nucleons: concept of
energy density functional (EDF)

Cannot take the EDF from realistic nuclear forces: many-body
physics cut-off by assumption of independent particles

- Design and optimize effective nuclear forces

- Use guidance from theory of nuclear forces and ab initio methods

- Symmetry breaking (=deformation) the key to success

Compared to ab initio methods with realistic potentials, EDFs are
more phenomenological by design

— Connection with QCD/EFT is loose (at best)

- No power counting, perturbative expansion, etc.

Examples: Skyrme (zero-range) and Gogny (finite-range) forces
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HFB Energy (MeV)
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DFT as a Model

A mathematician view of DFT: given a set of parameters, we
produce a set of outputs by solving the DFT equations (to
determine the actual density p(r) in the system)

Sources of uncertainties/errors
- Numerical errors due to implementation of DFT equations on a CPU
- Statistical uncertainties induced by the fit of model parameters on data
- Systematic uncertainties caused by the choice of the functional
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Oscillator length b, (fm)
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Systematic uncertainties
From PRC 61, 034313 (2000)
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Skyrme Energy Density Functional

Start from the Skyrme two-body effective potential

- Write expectation value of Skyrme potential on independent particle state
(Slater determinant or HFB vacuum)

- Recast result as integral over space of functional of local density (EDF)

Skyrme EDF (particle-hole channel)
- Characterized by 10 parameters (time-even channel only)

- 5 of them can be expressed as function of nuclear matter properties = better
constrained

Practical implementation of DFT in nuclear structure
- HFB ansatz for the ground-state wave function
- Degrees of freedom are the one-body density matrix and the pairing tensor

Pairing channel: surface-volume EDF
- Contains only 2 adjustable parameters
- Only Odd-Even Mass (OEM) staggerings taken into account
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PRC 82, 024313 (2010),

The UNEDF Protocol T o D

* First fit at deformed HFB level = wl et 1
should reduce bias of the fit - v e
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Sensitivity and Covariance Analvsis

————— PRC 87, 034324 (2013)
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Quantifying the Unknown: Bayesian Inference

= DFT model parameters are treated as genuine random variables
- No such thing as 'exact value of the parameter’
- Interval of confidence » probability distribution

= Bayesian inference techniques allow for rigorous determination of the
probability distribution of parameters (=posterior distribution)

= The posterior distribution depends on some metric defined by a y,
L(model) ~ e~ X2
= Consequences

- Use of statistical techniques always imply some “fitting” to data

- Potential conflict with desired predictive power of physics model...
350(n,f) E, = Thermal

Example: Prediction of fission product yields 332
(FPY), see David Regnier's talk 500

« DFT: Compute FPY from EDF fitted on g.s. properties p
(mostly) using only hypothesis of adiabaticity of large 200 |
amplitude collective motion and quantum mechanics 5356 E

» IAEA: Five-Gaussian models containing 8 parameters 100
adjusted on data in actinides :

60 80 100 120 140 160 180 200
Mass
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Response functions

UNEDF1 objective function involves
about 100 deformed HFB calculations
- 1 HFB =6 cores for 5 minutes
- 1, evaluation ~ 600 cores for 5 minutes

Mitigation: use response function to
emulate the true x,

Three-step process
— Train the model with genuine x, calculations
(= generate “data”)

— Determine a response function, and treat
parameters as random variables

—~  Run MCMC to build the distribution for the
parameters of the emulator

. Initial sampling of parameter
Model emulation becomes parts of the | space in the construction of the

uncertainty quantification and emulator for UNEDF1
propagation
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Linear approximation

= Use emulator to easily quantify dependence of data on
parameters
— Masses vary linearly across a relatively large range
Fission isomers show more non-linearities
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UNEDF1 Posterior Distribution

PRL 114, 122501 (2015)
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Propagating Uncertainties
" Propagation of of
uncertainties done by 5

— sampling the posterior I
distribution (=generating a

= Results obtained with _

uniform prior e

EDF parametrizations)
- calculating observables of
interest with sampled EDF
13(;Sn 134Sn 136I'|'e I 14I0Te 14(;Xe 144Ba 146ICe I IS(I)CeI 160ISm
. 132Gy 134Te  138Te  138Xe 142By  146Ry 148Ce 158G
* Two main sources of
statistical uncertainties Errors and uncertainty of masses in
- UNEDF1 parametrization neutro.n-rth nqclgl measured at ANL.
Black lines: deviation between
- Emulator experiment and UNEDF1 values
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= Large statistical uncertainties in extrapolations caused by
- Lack of relevant data in optimization? (Ill-constrained parameters show up)
- Intrinsic limitations of the model? (Skyrme HFB is not predictive enough)
- Misconceptions? (Deformation properties are not well-constrained, 90% CI

is too broad)
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Outlook for DFT Optimization

Include uncertainties from model-dependent data (s.p. splittings)
with possibly large experimental error bars into EDF fit

- Option 1: simply include “some” experimental error
- Option 2: propagate uncertainty of model used to extract data.

Example: DBWA analyses for single-particle states, discrepancies in fission
isomer data

Combine numerical, statistical and systematic uncertainties in a
unique framework

Put more emphasis on pairing functional

— Hard to constrain by data (especially if functional involves several
parameters) = good candidate for uncertainty propagation

- Good candidate to estimate systematic errors?

EDF from realistic NN and NNN forces
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Challenges of Uncertainty Propagation

= Fission product yields arXiv:1510.08003
- Energy density functional o mepy
- Potential energy surface 10
- Collective inertia tensor S : S
- Scission configurations 3 1k o
— (SF: Least action principle) g g
- Definition of initial state £0.1} ‘c:‘;
— Dissipation :

* Example of major challenges 120 140 160 50 60

D f t
- Emulators of PES and scission to ragmentmass  fragment charge

propagate EDF uncertainties Mass (left) and charge (right) distribution
down to FPY o . o
A . of fission products in spontaneous fission
- Predicting impact on FPY of going  f 240py from DFT + Langevin dynamics

from low fidelity (=2D PES) to

high fidelity (>2 collective For a (short) review: arXiv:1503.05894

variables)
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Coming soon: INT Program in 2016

Bayesian Methods in Nuclear Physics (ISNET-4)
June 13 to July 8, 2016

R.J. Furnstahl, D. Higdon, N. Schunck, A.W. Steiner

A four-week program to explore how Bayesian inference can enable progress on
the frontiers of nuclear physics and open up new directions for the field.
Among our goals are to

Registration is still open (for a short while)!
http://www.int.washington.edu/PROGRAMS/16-2a/

@ l|earn from the experts about innovative and advanced uses of Bayesian
statistics, and best practices in applying them;

@ |earn about advanced computational tools and methods;
@ critically examine the application of Bayesian methods to particular physics
problems in the various subfields.

Existing efforts using Bayesian statistics will continue to develop over the
coming months, but Summer 2016 will be an opportune time to bring the

statisticians and nuclear practitioners together.
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